Suppr超能文献

克什米尔食品在模拟胃部条件下形成N-亚硝基化合物。

Formation of N-nitroso compounds under simulated gastric conditions from Kashmir foodstuffs.

作者信息

Siddiqi M, Tricker A R, Preussmann R

机构信息

Department of Biochemistry, University of Kashmir, Srinagar, India.

出版信息

Cancer Lett. 1988 Apr;39(3):259-65. doi: 10.1016/0304-3835(88)90068-7.

Abstract

Several foodstuffs and teas from an area of high esophageal cancer risk in Kashmir (India) were studied under simulated gastric conditions with a realistic nitrite concentration for the formation of N-nitroso compounds. N-Nitrosodimethylamine (NDMA), N-nitrosoproline (NPRO), N-nitrosothiazolidine-4-carboxylic acid (NTCA) and N-nitrosopipecolic acid (NPIC) were the main products in different foods. Significant amounts of NDMA were formed from dried fish (20 micrograms/kg), dried and pickled vegetables (35.6 micrograms/kg and 7.3 micrograms/kg), locally grown Brassica oleracea ('Hak') leaves (69.9 micrograms/kg), and the traditional tea 'Kehwa' (9.2 micrograms/kg). The highest level of NTCA was formed in smoked fish (3294 micrograms/kg). 'Salted tea' prepared according to local method formed considerable amounts of NPRO (360 micrograms/kg) and NPIC (5870 micrograms/kg) along with 3 yet unidentified non-volatile N-nitroso compounds. High values of 4315 micrograms/kg NPIC were also obtained following nitrosation of red chillies and mixed spice cake ('Wur') under simulated gastric conditions. These results suggest the possibility of an appreciable endogenous formation of N-nitroso compounds from local foods in Kashmir.

摘要

对来自克什米尔(印度)食管癌高发地区的几种食品和茶叶,在模拟胃部条件下,采用实际的亚硝酸盐浓度,研究了N-亚硝基化合物的形成情况。N-亚硝基二甲胺(NDMA)、N-亚硝基脯氨酸(NPRO)、N-亚硝基噻唑烷-4-羧酸(NTCA)和N-亚硝基哌啶酸(NPIC)是不同食品中的主要产物。干鱼(20微克/千克)、干腌蔬菜(35.6微克/千克和7.3微克/千克)、当地种植的甘蓝(“Hak”)叶(69.9微克/千克)和传统茶品“克瓦茶”(9.2微克/千克)中形成了大量的NDMA。烟熏鱼中NTCA的含量最高(3294微克/千克)。按照当地方法制备的“咸茶”中形成了大量的NPRO(360微克/千克)和NPIC(5870微克/千克),以及3种尚未鉴定的非挥发性N-亚硝基化合物。在模拟胃部条件下对红辣椒和混合香料饼(“Wur”)进行亚硝化后,也获得了4315微克/千克NPIC的高值。这些结果表明,克什米尔当地食物可能会大量内源性形成N-亚硝基化合物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验