Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
University of California San Francisco, 505 Parnassus Avenue, L352, CA, 94117, San Francisco, USA.
Neuroradiology. 2021 Jun;63(6):959-966. doi: 10.1007/s00234-021-02670-6. Epub 2021 Feb 16.
PURPOSE: The purpose of this study is to investigate relationship of patient age and sex to patterns of degenerative spinal stenosis on lumbar MRI (LMRI), rated as moderate or greater by a spine radiologist, using natural language processing (NLP) tools. METHODS: In this retrospective, IRB-approved study, LMRI reports acquired from 2007 to 2017 at a single institution were parsed with a rules-based natural language processing (NLP) algorithm for free-text descriptors of spinal canal stenosis (SCS) and neural foraminal stenosis (NFS) at each of six spinal levels (T12-S1) and categorized according to a 6-point grading scale. Demographic differences in the anatomic distribution of moderate (grade 3) or greater SCS and NFS were calculated by sex, and age and within-group differences for NFS symmetry (left vs. right) were calculated as odds ratios. RESULTS: Forty-three thousand two hundred fifty-five LMRI reports (34,947 unique patients, mean age = 54.7; sex = 54.9% women) interpreted by 152 radiologists were studied. Prevalence of significant SCS and NFS increased caudally from T12-L1 to L4-5 though less at L5-S1. NFS was asymmetrically more prevalent on the left at L2-L3 and L5-S1 (p < 0.001). SCS and NFS were more prevalent in men and SCS increased with age at all levels, but the effect size of age was largest at T12-L3. Younger patients (< 50 years) had relatively higher NFS prevalence at L5-S1. CONCLUSION: NLP can identify patterns of lumbar spine degeneration through analysis of a large corpus of radiologist interpretations. Demographic differences in stenosis prevalence shed light on the natural history and pathogenesis of LSDD.
目的:本研究旨在通过自然语言处理(NLP)工具,调查腰椎 MRI(LMRI)上退行性脊柱狭窄的模式与患者年龄和性别之间的关系,这些模式由脊柱放射科医生评定为中度或更严重。
方法:在这项回顾性、IRB 批准的研究中,对单家机构在 2007 年至 2017 年期间获得的 LMRI 报告进行了分析,使用基于规则的自然语言处理(NLP)算法对椎管狭窄(SCS)和神经孔狭窄(NFS)的自由文本描述进行解析,共分析了六个脊柱水平(T12-S1)的每个水平,并按照六级分级量表进行分类。根据性别计算了中度(3 级)或更严重 SCS 和 NFS 的解剖分布的性别差异,并计算了 NFS 对称性(左侧与右侧)的年龄内差异,以比值比表示。
结果:研究共分析了 43255 份 LMRI 报告(34947 名患者,平均年龄为 54.7 岁,54.9%为女性),由 152 名放射科医生进行解读。从 T12-L1 到 L4-5,SCS 和 NFS 的发生率逐渐增加,但在 L5-S1 处减少。在 L2-L3 和 L5-S1 处,NFS 左侧不对称性更为常见(p<0.001)。SCS 和 NFS 在男性中更为常见,且 SCS 在所有水平上均随年龄增长而增加,但年龄的效应大小在 T12-L3 最大。年轻患者(<50 岁)在 L5-S1 处 NFS 的患病率相对较高。
结论:通过对大量放射科医生解读的分析,NLP 可以识别腰椎退变的模式。狭窄发生率的人口统计学差异为 LSDD 的自然史和发病机制提供了线索。
Stud Health Technol Inform. 2002
AJR Am J Roentgenol. 2010-4
Spine J. 2013-5-10
Spine (Phila Pa 1976). 2011-11-15
Int J Med Sci. 2025-2-3
Osteoarthritis Cartilage. 2013-3-5