文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

年龄和性别对腰椎椎管和神经孔狭窄的分布和对称性的影响:43255 份腰椎 MRI 报告的自然语言处理分析。

Effects of age and sex on the distribution and symmetry of lumbar spinal and neural foraminal stenosis: a natural language processing analysis of 43,255 lumbar MRI reports.

机构信息

Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.

University of California San Francisco, 505 Parnassus Avenue, L352, CA, 94117, San Francisco, USA.

出版信息

Neuroradiology. 2021 Jun;63(6):959-966. doi: 10.1007/s00234-021-02670-6. Epub 2021 Feb 16.


DOI:10.1007/s00234-021-02670-6
PMID:33594502
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8128837/
Abstract

PURPOSE: The purpose of this study is to investigate relationship of patient age and sex to patterns of degenerative spinal stenosis on lumbar MRI (LMRI), rated as moderate or greater by a spine radiologist, using natural language processing (NLP) tools. METHODS: In this retrospective, IRB-approved study, LMRI reports acquired from 2007 to 2017 at a single institution were parsed with a rules-based natural language processing (NLP) algorithm for free-text descriptors of spinal canal stenosis (SCS) and neural foraminal stenosis (NFS) at each of six spinal levels (T12-S1) and categorized according to a 6-point grading scale. Demographic differences in the anatomic distribution of moderate (grade 3) or greater SCS and NFS were calculated by sex, and age and within-group differences for NFS symmetry (left vs. right) were calculated as odds ratios. RESULTS: Forty-three thousand two hundred fifty-five LMRI reports (34,947 unique patients, mean age = 54.7; sex = 54.9% women) interpreted by 152 radiologists were studied. Prevalence of significant SCS and NFS increased caudally from T12-L1 to L4-5 though less at L5-S1. NFS was asymmetrically more prevalent on the left at L2-L3 and L5-S1 (p < 0.001). SCS and NFS were more prevalent in men and SCS increased with age at all levels, but the effect size of age was largest at T12-L3. Younger patients (< 50 years) had relatively higher NFS prevalence at L5-S1. CONCLUSION: NLP can identify patterns of lumbar spine degeneration through analysis of a large corpus of radiologist interpretations. Demographic differences in stenosis prevalence shed light on the natural history and pathogenesis of LSDD.

摘要

目的:本研究旨在通过自然语言处理(NLP)工具,调查腰椎 MRI(LMRI)上退行性脊柱狭窄的模式与患者年龄和性别之间的关系,这些模式由脊柱放射科医生评定为中度或更严重。

方法:在这项回顾性、IRB 批准的研究中,对单家机构在 2007 年至 2017 年期间获得的 LMRI 报告进行了分析,使用基于规则的自然语言处理(NLP)算法对椎管狭窄(SCS)和神经孔狭窄(NFS)的自由文本描述进行解析,共分析了六个脊柱水平(T12-S1)的每个水平,并按照六级分级量表进行分类。根据性别计算了中度(3 级)或更严重 SCS 和 NFS 的解剖分布的性别差异,并计算了 NFS 对称性(左侧与右侧)的年龄内差异,以比值比表示。

结果:研究共分析了 43255 份 LMRI 报告(34947 名患者,平均年龄为 54.7 岁,54.9%为女性),由 152 名放射科医生进行解读。从 T12-L1 到 L4-5,SCS 和 NFS 的发生率逐渐增加,但在 L5-S1 处减少。在 L2-L3 和 L5-S1 处,NFS 左侧不对称性更为常见(p<0.001)。SCS 和 NFS 在男性中更为常见,且 SCS 在所有水平上均随年龄增长而增加,但年龄的效应大小在 T12-L3 最大。年轻患者(<50 岁)在 L5-S1 处 NFS 的患病率相对较高。

结论:通过对大量放射科医生解读的分析,NLP 可以识别腰椎退变的模式。狭窄发生率的人口统计学差异为 LSDD 的自然史和发病机制提供了线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6519/8128837/c78c7dcee39d/234_2021_2670_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6519/8128837/dc44a2275e84/234_2021_2670_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6519/8128837/f53d425ff0c0/234_2021_2670_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6519/8128837/51c0c314aee4/234_2021_2670_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6519/8128837/378e76c10d17/234_2021_2670_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6519/8128837/c78c7dcee39d/234_2021_2670_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6519/8128837/dc44a2275e84/234_2021_2670_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6519/8128837/f53d425ff0c0/234_2021_2670_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6519/8128837/51c0c314aee4/234_2021_2670_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6519/8128837/378e76c10d17/234_2021_2670_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6519/8128837/c78c7dcee39d/234_2021_2670_Fig5_HTML.jpg

相似文献

[1]
Effects of age and sex on the distribution and symmetry of lumbar spinal and neural foraminal stenosis: a natural language processing analysis of 43,255 lumbar MRI reports.

Neuroradiology. 2021-6

[2]
The role of rigid vs. dynamic instrumentation for stabilization of the degenerative lumbosacral spine.

Stud Health Technol Inform. 2002

[3]
Intra- and Intersubspecialty Variability in Lumbar Spine MRI Interpretation: A Multireader Study Comparing Musculoskeletal Radiologists and Neuroradiologists.

Curr Probl Diagn Radiol. 2020

[4]
A practical MRI grading system for lumbar foraminal stenosis.

AJR Am J Roentgenol. 2010-4

[5]
Congenital lumbar spinal stenosis: a prospective, control-matched, cohort radiographic analysis.

Spine J. 2005

[6]
Factors affecting dynamic foraminal stenosis in the lumbar spine.

Spine J. 2013-5-10

[7]
Facet joints arthrosis in normal and stenotic lumbar spines.

Spine (Phila Pa 1976). 2011-11-15

[8]
Rigid, semirigid versus dynamic instrumentation for degenerative lumbar spinal stenosis: a correlative radiological and clinical analysis of short-term results.

Spine (Phila Pa 1976). 2004-4-1

[9]
Deep Learning Model for Automated Detection and Classification of Central Canal, Lateral Recess, and Neural Foraminal Stenosis at Lumbar Spine MRI.

Radiology. 2021-7

[10]
Anatomic radiological variations in developmental lumbar spinal stenosis: a prospective, control-matched comparative analysis.

Spine J. 2013-10-9

引用本文的文献

[1]
Effects of lumbar degeneration on the global and regional bone mineral density in osteoporotic patients requiring lumbar interbody fusion for degenerative lumbar diseases.

Eur Spine J. 2025-7-21

[2]
Information Extraction from Clinical Texts with Generative Pre-trained Transformer Models.

Int J Med Sci. 2025-2-3

[3]
Natural language processing-based analysis of the level of adoption by expert radiologists of the ASSR, ASNR and NASS version 2.0 of lumbar disc nomenclature: an eight-year survey.

Quant Imaging Med Surg. 2024-11-1

[4]
Natural language processing in low back pain and spine diseases: A systematic review.

Front Surg. 2022-7-14

[5]
Associations between Patient Report of Pain and Intervertebral Foramina Changes Visible on Axial-Loaded Lumbar Magnetic Resonance Imaging.

Diagnostics (Basel). 2022-2-23

本文引用的文献

[1]
Lumbosacral transitional vertebrae are associated with lumbar degeneration: retrospective evaluation of 3855 consecutive abdominal CT scans.

Eur Radiol. 2020-2-19

[2]
Intra- and Intersubspecialty Variability in Lumbar Spine MRI Interpretation: A Multireader Study Comparing Musculoskeletal Radiologists and Neuroradiologists.

Curr Probl Diagn Radiol. 2020

[3]
Comparison of Natural Language Processing Rules-based and Machine-learning Systems to Identify Lumbar Spine Imaging Findings Related to Low Back Pain.

Acad Radiol. 2018-3-28

[4]
Preoperative MRI findings predict two-year postoperative clinical outcome in lumbar spinal stenosis.

PLoS One. 2014-9-17

[5]
Consensus conference on core radiological parameters to describe lumbar stenosis - an initiative for structured reporting.

Eur Radiol. 2014-7-31

[6]
Lumbar disc nomenclature: version 2.0: Recommendations of the combined task forces of the North American Spine Society, the American Society of Spine Radiology and the American Society of Neuroradiology.

Spine J. 2014-11-1

[7]
Associations between radiographic lumbar spinal stenosis and clinical symptoms in the general population: the Wakayama Spine Study.

Osteoarthritis Cartilage. 2013-3-5

[8]
Morphometric analysis of the lumbar intervertebral foramen in patients with degenerative lumbar scoliosis by multidetector-row computed tomography.

Eur Spine J. 2012-6-29

[9]
Radiologic criteria for the diagnosis of spinal stenosis: results of a Delphi survey.

Radiology. 2012-5-1

[10]
The prevalence of transitional vertebrae in the lumbar spine.

Spine J. 2011-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索