Unit of Thoracic Surgery, AOU Ospedali Riuniti of Ancona, Via Conca 71, 60126, Ancona, Italy.
Department of Information Engineering, Università Politecnica Delle Marche, Ancona, Italy.
World J Surg. 2021 May;45(5):1585-1594. doi: 10.1007/s00268-020-05948-7. Epub 2021 Feb 16.
The use of innovative methodologies, such as Surgical Data Science (SDS), based on artificial intelligence (AI) could prove to be useful for extracting knowledge from clinical data overcoming limitations inherent in medical registries analysis. The aim of the study is to verify if the application of an AI analysis to our database could develop a model able to predict cardiopulmonary complications in patients submitted to lung resection.
We retrospectively analyzed data of patients submitted to lobectomy, bilobectomy, segmentectomy and pneumonectomy (January 2006-December 2018). Fifty preoperative characteristics were used for predicting the occurrence of cardiopulmonary complications. The prediction model was developed by training and testing a machine learning (ML) algorithm (XGBOOST) able to deal with registries characterized by missing data. We calculated the receiver operating characteristic curve, true positive rate (TPR), positive predictive value (PPV) and accuracy of the model.
We analyzed 1360 patients (lobectomy: 80.7%, segmentectomy: 11.9%, bilobectomy 3.7%, pneumonectomy: 3.7%) and 23.3% of them experienced cardiopulmonary complications. XGBOOST algorithm generated a model able to predict complications with an area under the curve of 0.75, a TPR of 0.76, a PPV of 0.68. The model's accuracy was 0.70. The algorithm included all the variables in the model regardless of their completeness.
Using SDS principles in thoracic surgery for the first time, we developed an ML model able to predict cardiopulmonary complications after lung resection based on 50 patient characteristics. The prediction was also possible even in the case of those patients for whom we had incomplete data. This model could improve the process of counseling and the perioperative management of lung resection candidates.
基于人工智能(AI)的创新方法,如外科数据科学(SDS),可能有助于从临床数据中提取知识,克服医疗注册分析固有的局限性。本研究旨在验证将 AI 分析应用于我们的数据库是否能够开发一种能够预测接受肺切除术的患者心肺并发症的模型。
我们回顾性分析了 2006 年 1 月至 2018 年 12 月间接受 lobectomy、bilobectomy、segmentectomy 和 pneumonectomy 的患者数据。使用 50 个术前特征来预测心肺并发症的发生。该预测模型是通过训练和测试一种能够处理具有缺失数据的注册数据的机器学习(ML)算法(XGBOOST)开发的。我们计算了模型的接收者操作特征曲线、真阳性率(TPR)、阳性预测值(PPV)和准确性。
我们分析了 1360 名患者(lobectomy:80.7%、segmentectomy:11.9%、bilobectomy:3.7%、pneumonectomy:3.7%),其中 23.3%的患者出现心肺并发症。XGBOOST 算法生成了一个能够预测并发症的模型,曲线下面积为 0.75,TPR 为 0.76,PPV 为 0.68。模型的准确性为 0.70。该算法包含模型中所有的变量,而不管它们的完整性如何。
我们首次在胸外科中使用 SDS 原则,开发了一种基于 50 个患者特征的 ML 模型,能够预测肺切除术后的心肺并发症。即使对于那些数据不完整的患者,也可以进行预测。该模型可以改善肺切除术患者的咨询和围手术期管理过程。