Suppr超能文献

用于引导成纤维细胞进行组织构建的新型微支架的仿生设计

Bioinspired Design of Novel Microscaffolds for Fibroblast Guidance toward Tissue Building.

作者信息

Pedram Parisa, Mazio Claudia, Imparato Giorgia, Netti Paolo A, Salerno Aurelio

机构信息

Center for Advanced Biomaterials for Healthcare, Istituto Italiano di Tecnologia (IIT@CRIB), Largo Barsanti e Matteucci, 53, Naples 80125, Italy.

Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples 80125, Italy.

出版信息

ACS Appl Mater Interfaces. 2021 Mar 3;13(8):9589-9603. doi: 10.1021/acsami.0c20687. Epub 2021 Feb 17.

Abstract

Porous microscaffolds (μ-scaffs) play a crucial role in modular tissue engineering as they control cell functions and guide hierarchical tissue formation toward building new functional tissue analogues. In the present study, we developed a new route to prepare porous polycaprolactone (PCL) μ-scaffs with a bioinspired trabecular structure that supported adhesion, growth, and biosynthesis of human dermal fibroblasts (HDFs). The method involved the use of poly(ethylene oxide) (PEO) as a biocompatible porogen and a fluidic emulsion/porogen leaching/particle coagulation process to obtain spherical μ-scaffs with controllable diameter and full pore interconnectivity. To achieve this objective, we investigated the effect of PEO concentration and the temperature of the coagulation bath on the μ-scaff architecture, while we modulated the μ-scaff diameter distribution by varying the PCL-PEO amount in the starting solution and changing the flow rate of the continuous phase (). μ-Scaff morphology, pore architecture, and diameter distribution were assessed using scanning electron microscopy (SEM) analysis, microcomputed tomography (microCT), and Image analysis. We reported that the selection of 60 wt % PEO concentration, together with a 4 °C coagulation bath temperature and ultrasound postprocessing, allowed for the design and fabrication of μ-scaff with porosity up to 80% and fully interconnected pores on both the μ-scaff surface and the core. Furthermore, μ-scaff diameter distributions were finely tuned in the 100-600 μm range with the coefficient of variation lower than 5% by selecting the PCL-PEO concentration in the 1-10% w/v range and of either 8 or 18 mL/min. Finally, we investigated the capability of the HDF-seeded PCL μ-scaff to form hybrid (biological/synthetic) tissue . Cell culture tests demonstrated that PCL μ-scaff enabled HDF adhesion, proliferation, colonization, and collagen biosynthesis within inter- and intraparticle spaces and guided the formation of a large (centimeter-sized) viable tissue construct.

摘要

多孔微支架(μ-支架)在模块化组织工程中起着至关重要的作用,因为它们控制细胞功能并引导分层组织形成,以构建新的功能性组织类似物。在本研究中,我们开发了一种新的方法来制备具有仿生小梁结构的多孔聚己内酯(PCL)μ-支架,该结构支持人皮肤成纤维细胞(HDF)的粘附、生长和生物合成。该方法涉及使用聚环氧乙烷(PEO)作为生物相容性致孔剂,并通过流体乳液/致孔剂浸出/颗粒凝聚过程来获得具有可控直径和完全孔隙互连性的球形μ-支架。为了实现这一目标,我们研究了PEO浓度和凝固浴温度对μ-支架结构的影响,同时通过改变起始溶液中PCL-PEO的量和连续相的流速来调节μ-支架的直径分布。使用扫描电子显微镜(SEM)分析、微型计算机断层扫描(microCT)和图像分析对μ-支架的形态、孔隙结构和直径分布进行了评估。我们报告说,选择60 wt%的PEO浓度,以及4°C的凝固浴温度和超声后处理,可以设计和制造孔隙率高达80%且在μ-支架表面和核心均具有完全互连孔隙的μ-支架。此外,通过选择1-10% w/v范围内的PCL-PEO浓度和8或18 mL/min的流速,μ-支架的直径分布在100-600μm范围内得到了精细调整,变异系数低于5%。最后,我们研究了接种HDF的PCL μ-支架形成混合(生物/合成)组织的能力。细胞培养测试表明,PCL μ-支架能够使HDF在颗粒间和颗粒内空间粘附、增殖、定植和进行胶原蛋白生物合成,并引导形成一个大的(厘米级)有活力的组织构建体。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验