Suppr超能文献

通过模拟和湿实验室实验剖析潜伏膜蛋白1跨膜结构域5中带电残基的作用

Dissecting Role of Charged Residue from Transmembrane Domain 5 of Latent Membrane Protein 1 via Simulations and Wet-Lab Experiments.

作者信息

Wang Yibo, Zhang Bo, Lin Cong, Liu Ying, Yang Min, Peng Yinghua, Wang Xiaohui

机构信息

Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin China, 130022.

Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui China, 230026.

出版信息

J Phys Chem B. 2021 Mar 4;125(8):2124-2133. doi: 10.1021/acs.jpcb.0c10708. Epub 2021 Feb 17.

Abstract

Charged residues are frequently found in the transmembrane segments of membrane proteins, which reside in the hydrophobic bilayer environment. Charged residues are critical for the function of membrane protein. However, studies of their role in protein oligomerization are limited. By taking the fifth transmembrane domain (TMD5) of latent membrane protein 1 from the Epstein-Barr virus as a prototype model, simulations and wet-lab experiments were performed to investigate how the charged states affect transmembrane domain oligomerization. Molecular dynamics (MD) simulations showed that the D150-protonated TMD5 trimer was stable, whereas unprotonated D150 created bends in the helices which distort the trimeric structure. D150 was mutated to asparagine to mimic the protonated D150 in TMD5, and the MD simulations of different D150N TMD5 trimers supported that the protonation state of D150 was critical for the trimerization of TMD5. mutations found that D150N TMD5 preferred to interact with TMD5 to form the heterotrimer (1 D150N TMD5:2 protonated TMD5s) rather than the heterotrimer (2 D150N TMD5s:1 protonated TMD5). D150R TMD5 interacted with TMD5 to form the heterotrimer (1 D150R TMD5:2 protonated TMD5). These results imply that D150N TMD5 and D150R TMD5 peptides may be probes for disrupting TMD5 trimerization, which was supported by the dominant-negative ToxR assay in bacterial membranes. In all, this study elucidates the role of charged residues at the membrane milieu in membrane protein oligomerization and provides insight into the development of oligomerization-regulating peptides for modulating transmembrane domain lateral interactions.

摘要

带电荷的残基经常出现在膜蛋白的跨膜区域,这些区域存在于疏水的双层环境中。带电荷的残基对膜蛋白的功能至关重要。然而,关于它们在蛋白质寡聚化中作用的研究却很有限。以爱泼斯坦 - 巴尔病毒潜伏膜蛋白1的第五个跨膜结构域(TMD5)作为原型模型,进行了模拟和湿实验室实验,以研究带电状态如何影响跨膜结构域的寡聚化。分子动力学(MD)模拟表明,D150质子化的TMD5三聚体是稳定的,而未质子化的D150会在螺旋中产生弯曲,从而扭曲三聚体结构。将D150突变为天冬酰胺以模拟TMD5中质子化的D150,不同D150N TMD5三聚体的MD模拟支持D150的质子化状态对TMD5的三聚化至关重要。突变发现D150N TMD5更倾向于与TMD5相互作用形成异源三聚体(1个D150N TMD5:2个质子化的TMD5),而不是异源三聚体(2个D150N TMD5:1个质子化的TMD5)。D150R TMD5与TMD5相互作用形成异源三聚体(1个D150R TMD5:2个质子化的TMD5)。这些结果表明D150N TMD5和D150R TMD5肽可能是破坏TMD5三聚化的探针,这在细菌膜中的显性负性ToxR测定中得到了支持。总之,本研究阐明了膜环境中带电荷残基在膜蛋白寡聚化中的作用,并为开发用于调节跨膜结构域侧向相互作用的寡聚化调节肽提供了见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验