Suppr超能文献

通过分子动力学模拟探索带有可电离残基的跨膜螺旋三聚体化过程:以 LMP-1 的跨膜结构域 5 为例。

Exploring the trimerization process of a transmembrane helix with an ionizable residue by molecular dynamics simulations: a case study of transmembrane domain 5 of LMP-1.

机构信息

Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China.

Department of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China.

出版信息

Phys Chem Chem Phys. 2022 Mar 16;24(11):7084-7092. doi: 10.1039/d2cp00102k.

Abstract

The oligomerization of membrane proteins is an important biological process that plays a critical role in the initialization of membrane protein receptor signaling. Unveiling how transmembrane segments oligomerize is critical for understanding the mechanism of membrane receptor signaling activation. Owing to the complicated membrane environment and the extraordinary dynamic properties of the ionizable residues in the transmembrane segment, it is extremely challenging to thoroughly understand the oligomerization process of the transmembrane domain. In this study, transmembrane domain 5 (TMD5) of latent membrane protein-1 from Epstein-Barr virus was used as a prototype model to investigate the trimerization process of the transmembrane segment with ionizable residues. The trimerization process of TMD5 was rebuilt and investigated conventional molecular dynamics simulations and constant-pH molecular dynamics simulations. When TMD5s approached each other, the tilting angles of the TMD5 monomer decreased. TMD5s formed stable trimers until two interacting sites (D150s and Q139s) along each transmembrane helix were created to lock the TMD5s. The p values of D150 shifted toward neutral states in the membrane environment. When TMD5s were monomers, the p shift of D150 was mainly influenced by its microenvironment in the lipid bilayer. When TMD5s were moving close to each other, protein-protein interactions became the main contributing factor for the p shift of D150s. Overall, this work elucidates the behavior of the TMD5 helix and the p shift of ionizable residue D150 in the process of TMD5 oligomerization. This study may provide insight into the development of agents for targeting the oligomerization of membrane proteins.

摘要

膜蛋白的寡聚化是一个重要的生物学过程,在膜蛋白受体信号的起始中起着关键作用。揭示跨膜片段如何寡聚对于理解膜受体信号激活的机制至关重要。由于复杂的膜环境和跨膜片段中可离子化残基的非凡动态特性,彻底了解跨膜结构域的寡聚化过程极具挑战性。在这项研究中,以 Epstein-Barr 病毒潜伏膜蛋白 1 的跨膜域 5(TMD5)作为原型模型,研究了带有可离子化残基的跨膜片段的三聚体化过程。使用传统分子动力学模拟和恒 pH 分子动力学模拟对 TMD5 的三聚体化过程进行了重建和研究。当 TMD5 彼此靠近时,TMD5 单体的倾斜角度减小。TMD5 形成稳定的三聚体,直到在每个跨膜螺旋上形成两个相互作用位点(D150 和 Q139)以锁定 TMD5。膜环境中 D150 的 p 值向中性状态转移。当 TMD5 为单体时,D150 的 p 值转移主要受其在脂质双层中的微环境影响。当 TMD5 彼此靠近时,蛋白质-蛋白质相互作用成为 D150 p 值转移的主要贡献因素。总体而言,这项工作阐明了 TMD5 螺旋和可离子化残基 D150 在 TMD5 寡聚化过程中的 p 值转移行为。这项研究可能为针对膜蛋白寡聚化的靶向药物的开发提供了思路。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验