Suppr超能文献

压缩和拉伸变形改变肌动蛋白丝中的 ATP 水解和磷酸盐释放速率。

Compressive and Tensile Deformations Alter ATP Hydrolysis and Phosphate Release Rates in Actin Filaments.

机构信息

Department of Chemistry, Chicago Center for Theoretical Chemistry, James Franck Institute, and Institute for Biophysical Dynamics, The University of Chicago, Chicago, Illinois 60637, United States.

出版信息

J Chem Theory Comput. 2021 Mar 9;17(3):1900-1913. doi: 10.1021/acs.jctc.0c01186. Epub 2021 Feb 17.

Abstract

Actin filament networks in eukaryotic cells are constantly remodeled through nucleotide state controlled interactions with actin binding proteins, leading to macroscopic structures such as bundled filaments, branched filaments, and so on. The nucleotide (ATP) hydrolysis, phosphate release, and polymerization/depolymerization reactions that lead to the formation of these structures are correlated with the conformational fluctuations of the actin subunits at the molecular scale. The resulting structures generate and experience varying levels of force and impart cells with several functionalities such as their ability to move, divide, transport cargo, etc. Models that explicitly connect the structure to reactions are essential to elucidate a fundamental level of understanding of these processes. In this regard, a bottom-up Ultra-Coarse-Grained (UCG) model of actin filaments that can simulate ATP hydrolysis, inorganic phosphate release (Pi), and depolymerization reactions is presented in this work. In this model, actin subunits are represented using coarse-grained particles that evolve in time and undergo reactions depending on the conformations sampled. The reactions are represented through state transitions, with each state represented by a unique effective coarse-grained potential. Effects of compressive and tensile strains on the rates of reactions are then analyzed. Compressive strains tend to unflatten the actin subunits, reduce the rate of ATP hydrolysis, and increase the Pi release rate. On the other hand, tensile strain flattens subunits, increases the rate of ATP hydrolysis, and decrease the Pi release rate. Incorporating these predictions into a Markov State Model highlighted that strains alter the steady-state distribution of subunits with ADPPi and ADP nucleotide, thus identifying possible additional factors underlying the cooperative binding of regulatory proteins to actin filaments.

摘要

真核细胞中的肌动蛋白丝网络通过与肌动蛋白结合蛋白的核苷酸状态控制相互作用不断进行重塑,导致宏观结构的形成,如成束的丝、分支的丝等。导致这些结构形成的核苷酸(ATP)水解、磷酸盐释放和聚合/解聚反应与肌动蛋白亚基在分子尺度上的构象波动相关。由此产生的结构产生并经历不同水平的力,并赋予细胞多种功能,例如运动、分裂、运输货物等。明确将结构与反应联系起来的模型对于阐明这些过程的基本理解水平至关重要。在这方面,本文提出了一种能够模拟 ATP 水解、无机磷酸盐释放(Pi)和解聚反应的肌动蛋白丝的自下而上的超粗粒度(UCG)模型。在该模型中,肌动蛋白亚基使用粗粒度粒子表示,这些粒子随时间演变并根据采样的构象进行反应。反应通过状态转换来表示,每个状态都由独特的有效粗粒度势表示。然后分析压缩应变和拉伸应变对反应速率的影响。压缩应变往往会使肌动蛋白亚基变平,降低 ATP 水解的速率,并增加 Pi 的释放速率。另一方面,拉伸应变使亚基变平,增加 ATP 水解的速率,并降低 Pi 的释放速率。将这些预测纳入马尔可夫状态模型表明,应变改变了 ADPPi 和 ADP 核苷酸的肌动蛋白亚基的稳态分布,从而确定了调节蛋白与肌动蛋白丝协同结合的潜在附加因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验