Kyushu Research Center, Forestry and Forest Products Research Institute (FFPRI), Kumamoto-city, Kumamoto, Japan.
Department of Forest Soils, FFPRI, Tsukuba, Ibaraki, Japan.
PLoS One. 2021 Feb 17;16(2):e0247165. doi: 10.1371/journal.pone.0247165. eCollection 2021.
Spatiotemporal prediction of the response of planted forests to a changing climate is increasingly important for the sustainable management of forest ecosystems. In this study, we present a methodology for estimating spatially varying productivity in a planted forest and changes in productivity with a changing climate in Japan, with a focus on Japanese cedar (Cryptomeria japonica D. Don) as a representative tree species of this region. The process-based model Biome-BGC was parameterized using a plant trait database for Japanese cedar and a Bayesian optimization scheme. To compare productivity under historical (1996-2000) and future (2096-2100) climatic conditions, the climate scenarios of two representative concentration pathways (i.e., RCP2.6 and RCP8.5) were used in five global climate models (GCMs) with approximately 1-km resolution. The seasonality of modeled fluxes, namely gross primary production, ecosystem respiration, net ecosystem exchange, and soil respiration, improved after two steps of parameterization. The estimated net primary production (NPP) of stands aged 36-40 years under the historical climatic conditions of the five GCMs was 0.77 ± 0.10 kgC m-2 year-1 (mean ± standard deviation), in accordance with the geographical distribution of forest NPP estimated in previous studies. Under the RCP2.6 and RCP8.5 scenarios, the mean NPP of the five GCMs increased by 0.04 ± 0.07 and 0.14 ± 0.11 kgC m-2 year-1, respectively. The increases in annual NPP were small in the southwestern region because of the decreases in summer NPP and the small increases in winter NPP under the RCP2.6 and RCP8.5 scenarios, respectively. Under the RCP2.6 scenario, Japanese cedar was at risk in the southwestern region, in accordance with previous studies, and monitoring and silvicultural practices should be modified accordingly.
时空预测人工林对气候变化的响应对于森林生态系统的可持续管理变得越来越重要。在本研究中,我们提出了一种方法来估计日本人工林的空间变化生产力以及随着气候变化的生产力变化,重点关注日本雪松(Cryptomeria japonica D. Don)作为该地区的代表性树种。基于过程的 Biome-BGC 模型使用日本雪松的植物性状数据库和贝叶斯优化方案进行了参数化。为了比较历史时期(1996-2000 年)和未来时期(2096-2100 年)的生产力,我们使用了两种代表性浓度途径(即 RCP2.6 和 RCP8.5)的气候情景,以及五个分辨率约为 1 公里的全球气候模型(GCM)。经过两步参数化后,模型化通量的季节性(即总初级生产力、生态系统呼吸、净生态系统交换和土壤呼吸)得到了改善。在五个 GCM 的历史气候条件下,36-40 岁林分的估计总初级生产力(NPP)为 0.77 ± 0.10 kgC m-2 year-1(平均值 ± 标准差),与先前研究中估计的森林 NPP 的地理分布一致。在 RCP2.6 和 RCP8.5 情景下,五个 GCM 的平均 NPP 分别增加了 0.04 ± 0.07 和 0.14 ± 0.11 kgC m-2 year-1。由于 RCP2.6 和 RCP8.5 情景下夏季 NPP 的减少和冬季 NPP 的小幅增加,西南部地区的年 NPP 增加幅度较小。在 RCP2.6 情景下,根据先前的研究,日本雪松在西南部地区面临风险,因此应相应地修改监测和造林实践。