Wang Xinyu, Fan Hongzhao, Han Dan, Hong Yang, Zhang Jingchao
Institute of Thermal Science and Technology, Shandong University, Jinan 250061, People's Republic of China.
Shenzhen Research Institute of Shandong University, Shenzhen 518057, People's Republic of China.
Nanotechnology. 2021 Mar 5;32(21). doi: 10.1088/1361-6528/abe749.
As the machinery of artificial intelligence matures in recent years, there has been a surge in applying machine learning (ML) techniques for material property predictions. Artificial neural network (ANN) is a branch of ML and has gained increasing popularity due to its capabilities of modeling complex correlations among large datasets. The interfacial thermal transport plays a significant role in the thermal management of graphene-pentacene based organic electronics. In this work, the thermal boundary resistance (TBR) between graphene and pentacene is comprehensively investigated by classical molecular dynamics simulations combined with the ML technique. The TBR values along the,anddirections of pentacene at 300 K are 5.19 ± 0.18 × 10mK W, 3.66 ± 0.36 × 10mK Wand 5.03 ± 0.14 × 10mK W, respectively. Different architectures of ANN models are trained to predict the TBR between graphene and pentacene. Two important hyperparameters, i.e. network layer and the number of neurons are explored to achieve the best prediction results. It is reported that the two-layer ANN with 40 neurons each layer provides the optimal model performance with a normalized mean square error loss of 7.04 × 10. Our results provide reasonable guidelines for the thermal design and development of graphene-pentacene electronic devices.
近年来,随着人工智能技术的成熟,将机器学习(ML)技术应用于材料性能预测的研究激增。人工神经网络(ANN)是机器学习的一个分支,由于其能够对大型数据集中的复杂相关性进行建模,因此越来越受到关注。界面热传输在基于石墨烯-并五苯的有机电子器件的热管理中起着重要作用。在这项工作中,结合机器学习技术,通过经典分子动力学模拟全面研究了石墨烯和并五苯之间的热边界电阻(TBR)。在300K下,沿并五苯的 、 和 方向的TBR值分别为5.19±0.18×10 mK W、3.66±0.36×10 mK W和5.03±0.14×10 mK W。训练了不同架构的人工神经网络模型来预测石墨烯和并五苯之间的TBR。探索了两个重要的超参数,即网络层数和神经元数量,以获得最佳预测结果。据报道,每层有40个神经元的两层人工神经网络提供了最佳的模型性能,归一化均方误差损失为7.04×10 。我们的结果为石墨烯-并五苯电子器件的热设计和开发提供了合理的指导。