Suppr超能文献

通过机器学习方法预测热边界电阻。

Prediction of thermal boundary resistance by the machine learning method.

机构信息

National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, 305-0047, Japan.

出版信息

Sci Rep. 2017 Aug 2;7(1):7109. doi: 10.1038/s41598-017-07150-7.

Abstract

Thermal boundary resistance (TBR) is a key property for the thermal management of high power micro- and opto-electronic devices and for the development of high efficiency thermal barrier coatings and thermoelectric materials. Prediction of TBR is important for guiding the discovery of interfaces with very low or very high TBR. In this study, we report the prediction of TBR by the machine learning method. We trained machine learning models using the collected experimental TBR data as training data and materials properties that might affect TBR as descriptors. We found that the machine learning models have much better predictive accuracy than the commonly used acoustic mismatch model and diffuse mismatch model. Among the trained models, the Gaussian process regression and the support vector regression models have better predictive accuracy. Also, by comparing the prediction results using different descriptor sets, we found that the film thickness is an important descriptor in the prediction of TBR. These results indicate that machine learning is an accurate and cost-effective method for the prediction of TBR.

摘要

热边界电阻 (TBR) 是高热功率微光电电子器件热管理以及高效率热障涂层和热电材料开发的关键特性。TBR 的预测对于指导具有极低或极高 TBR 的界面的发现非常重要。在本研究中,我们报告了通过机器学习方法预测 TBR。我们使用收集的实验 TBR 数据作为训练数据,并使用可能影响 TBR 的材料特性作为描述符来训练机器学习模型。我们发现机器学习模型比常用的声失配模型和漫射失配模型具有更好的预测精度。在所训练的模型中,高斯过程回归和支持向量回归模型具有更好的预测精度。此外,通过比较使用不同描述符集的预测结果,我们发现薄膜厚度是 TBR 预测中的一个重要描述符。这些结果表明,机器学习是一种准确且具有成本效益的 TBR 预测方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f326/5540921/e50231f5c0a6/41598_2017_7150_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验