Suppr超能文献

使用微喷射器在细胞单层上制造伤口。

Creating wounds in cell monolayers using micro-jets.

作者信息

Soitu Cristian, Panea Mirela, Castrejón-Pita Alfonso A, Cook Peter R, Walsh Edmond J

机构信息

Osney Thermofluids Institute, Department of Engineering Science, University of Oxford, Osney Mead, Oxford OX2 0ES, United Kingdom.

Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford OX3 9DS, United Kingdom.

出版信息

Biomicrofluidics. 2021 Feb 8;15(1):014108. doi: 10.1063/5.0043312. eCollection 2021 Jan.

Abstract

Many wound-healing assays are used in cell biology and biomedicine; they are often labor intensive and/or require specialized and costly equipment. We describe a contactless method to create wounds with any imaginable 2D pattern in cell monolayers using the micro-jets of either media or an immiscible and biocompatible fluorocarbon (i.e., FC40). We also combine this with another method that allows automation and multiplexing using standard Petri dishes. A dish is filled with a thin film of media overlaid with FC40, and the two liquids are reshaped into an array of microchambers within minutes. Each chamber in such a grid is isolated from others by the fluid walls of FC40. Cells are now added, allowed to grow into a monolayer, and wounds are created using the microjets; then, healing is monitored by microscopy. As arrays of chambers can be made using media and Petri dishes familiar to biologists, and as dishes fit seamlessly into their incubators, microscopes, and workflows, we anticipate that this assay will find wide application in wound healing.

摘要

细胞生物学和生物医学中使用了许多伤口愈合检测方法;这些方法通常劳动强度大,并且/或者需要专门且昂贵的设备。我们描述了一种非接触式方法,可使用培养基或不混溶且具有生物相容性的氟碳化合物(即FC40)的微喷射在细胞单层中创建具有任何可想象的二维图案的伤口。我们还将此方法与另一种方法相结合,该方法允许使用标准培养皿实现自动化和多重检测。将一个培养皿装满覆盖有FC40的薄培养基膜,两种液体在几分钟内重新形成微腔阵列。在这样的网格中,每个腔室通过FC40的流体壁与其他腔室隔离。现在添加细胞,使其生长成单层,然后使用微喷射创建伤口;然后,通过显微镜监测愈合情况。由于可以使用生物学家熟悉的培养基和培养皿制作腔室阵列,并且由于培养皿可以无缝地放入他们的培养箱、显微镜和工作流程中,我们预计这种检测方法将在伤口愈合中得到广泛应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43d2/7872715/4ad91e648cba/BIOMGB-000015-014108_1-g001.jpg

相似文献

1
Creating wounds in cell monolayers using micro-jets.
Biomicrofluidics. 2021 Feb 8;15(1):014108. doi: 10.1063/5.0043312. eCollection 2021 Jan.
2
Jet-Printing Microfluidic Devices on Demand.
Adv Sci (Weinh). 2020 Oct 26;7(23):2001854. doi: 10.1002/advs.202001854. eCollection 2020 Dec.
3
Microfluidics on Standard Petri Dishes for Bioscientists.
Small Methods. 2021 Nov;5(11):e2100724. doi: 10.1002/smtd.202100724. Epub 2021 Oct 7.
4
Microfluidic chambers using fluid walls for cell biology.
Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):E5926-E5933. doi: 10.1073/pnas.1805449115. Epub 2018 Jun 12.
5
A platform for modular assembly and feeding of micro-organoids on standard Petri dishes.
Biol Open. 2023 May 15;12(5). doi: 10.1242/bio.059825. Epub 2023 May 19.
6
Raising fluid walls around living cells.
Sci Adv. 2019 Jun 5;5(6):eaav8002. doi: 10.1126/sciadv.aav8002. eCollection 2019 Jun.
7
A fluid-walled microfluidic platform for human neuron microcircuits and directed axotomy.
Lab Chip. 2024 Jun 25;24(13):3252-3264. doi: 10.1039/d4lc00107a.
8
A Customizable Chamber for Measuring Cell Migration.
J Vis Exp. 2017 Mar 12(121):55264. doi: 10.3791/55264.
9
Reconfigurable Microfluidic Circuits for Isolating and Retrieving Cells of Interest.
ACS Appl Mater Interfaces. 2022 Jun 8;14(22):25209-25219. doi: 10.1021/acsami.2c07177. Epub 2022 May 23.
10
Predicting flows through microfluidic circuits with fluid walls.
Microsyst Nanoeng. 2021 Nov 18;7:93. doi: 10.1038/s41378-021-00322-6. eCollection 2021.

引用本文的文献

1
A fluid-walled microfluidic platform for human neuron microcircuits and directed axotomy.
Lab Chip. 2024 Jun 25;24(13):3252-3264. doi: 10.1039/d4lc00107a.
2
In Vitro and In Vivo Characterization Methods for Evaluation of Modern Wound Dressings.
Pharmaceutics. 2022 Dec 22;15(1):42. doi: 10.3390/pharmaceutics15010042.

本文引用的文献

1
Jet-Printing Microfluidic Devices on Demand.
Adv Sci (Weinh). 2020 Oct 26;7(23):2001854. doi: 10.1002/advs.202001854. eCollection 2020 Dec.
2
An image J plugin for the high throughput image analysis of in vitro scratch wound healing assays.
PLoS One. 2020 Jul 28;15(7):e0232565. doi: 10.1371/journal.pone.0232565. eCollection 2020.
3
Using Fluid Walls for Single-Cell Cloning Provides Assurance in Monoclonality.
SLAS Technol. 2020 Jun;25(3):267-275. doi: 10.1177/2472630319891135. Epub 2019 Dec 9.
4
Emerging and innovative approaches for wound healing and skin regeneration: Current status and advances.
Biomaterials. 2019 Sep;216:119267. doi: 10.1016/j.biomaterials.2019.119267. Epub 2019 Jun 13.
5
Raising fluid walls around living cells.
Sci Adv. 2019 Jun 5;5(6):eaav8002. doi: 10.1126/sciadv.aav8002. eCollection 2019 Jun.
6
Into the breach: how cells cope with wounds.
Open Biol. 2018 Oct 3;8(10):180135. doi: 10.1098/rsob.180135.
7
Microfluidic chambers using fluid walls for cell biology.
Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):E5926-E5933. doi: 10.1073/pnas.1805449115. Epub 2018 Jun 12.
8
Microfluidics with fluid walls.
Nat Commun. 2017 Oct 10;8(1):816. doi: 10.1038/s41467-017-00846-4.
9
Research Techniques Made Simple: Analysis of Collective Cell Migration Using the Wound Healing Assay.
J Invest Dermatol. 2017 Feb;137(2):e11-e16. doi: 10.1016/j.jid.2016.11.020.
10
Collective cell migration: Implications for wound healing and cancer invasion.
Burns Trauma. 2013 Jun 18;1(1):21-6. doi: 10.4103/2321-3868.113331. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验