Soitu Cristian, Stovall-Kurtz Nicholas, Deroy Cyril, Castrejón-Pita Alfonso A, Cook Peter R, Walsh Edmond J
Osney Thermofluids Institute Department of Engineering Science University of Oxford Osney Mead Oxford OX2 0ES UK.
Department of Engineering Science University of Oxford Parks Road Oxford OX1 3PJ UK.
Adv Sci (Weinh). 2020 Oct 26;7(23):2001854. doi: 10.1002/advs.202001854. eCollection 2020 Dec.
There is an unmet demand for microfluidics in biomedicine. This paper describes contactless fabrication of microfluidic circuits on standard Petri dishes using just a dispensing needle, syringe pump, three-way traverse, cell-culture media, and an immiscible fluorocarbon (FC40). A submerged microjet of FC40 is projected through FC40 and media onto the bottom of a dish, where it washes media away to leave liquid fluorocarbon walls pinned to the substrate by interfacial forces. Such fluid walls can be built into almost any imaginable 2D circuit in minutes, which is exploited to clone cells in a way that beats the Poisson limit, subculture adherent cells, and feed arrays of cells continuously for a week. This general method should have wide application in biomedicine.
生物医学领域对微流控技术存在未满足的需求。本文描述了仅使用一个分配针、注射泵、三维移动装置、细胞培养基和一种不混溶的氟碳化合物(FC40)在标准培养皿上进行微流控电路的非接触式制造。一股浸没在FC40中的微射流穿过FC40和培养基喷射到培养皿底部,在那里它将培养基冲走,留下由界面力固定在基底上的液态氟碳壁。这样的流体壁可以在几分钟内构建成几乎任何可想象的二维电路,利用这一点可以以突破泊松极限的方式克隆细胞、传代贴壁细胞,并连续一周为细胞阵列提供营养。这种通用方法在生物医学中应具有广泛的应用。