Osney Thermofluids Institute, Department of Engineering Science, University of Oxford, Osney Mead, Oxford OX2 0ES, UK.
The Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
Lab Chip. 2024 Jun 25;24(13):3252-3264. doi: 10.1039/d4lc00107a.
In our brains, different neurons make appropriate connections; however, there remain few models of such circuits. We use an open microfluidic approach to build and study neuronal circuits in ways that fit easily into existing bio-medical workflows. Dumbbell-shaped circuits are built in minutes in standard Petri dishes; the aqueous phase is confined by fluid walls - interfaces between cell-growth medium and an immiscible fluorocarbon, FC40. Conditions are established that ensure post-mitotic neurons derived from human induced pluripotent stem cells (iPSCs) plated in one chamber of a dumbbell remain where deposited. After seeding cortical neurons on one side, axons grow through the connecting conduit to ramify amongst striatal neurons on the other - an arrangement mimicking unidirectional cortico-striatal connectivity. We also develop a moderate-throughput non-contact axotomy assay. Cortical axons in conduits are severed by a media jet; then, brain-derived neurotrophic factor and striatal neurons in distal chambers promote axon regeneration. As additional conduits and chambers are easily added, this opens up the possibility of mimicking complex neuronal networks, and screening drugs for their effects on connectivity.
在我们的大脑中,不同的神经元会建立适当的连接;然而,这样的电路模型仍然很少。我们使用开放式微流控方法来构建和研究神经元电路,这些方法可以轻松融入现有的生物医学工作流程。哑铃形电路可以在标准的培养皿中在几分钟内构建完成;水相被流体壁限制——细胞生长介质和不混溶的氟碳化合物 FC40 之间的界面。建立了条件,以确保在一个哑铃的一个腔室中接种的源自人诱导多能干细胞(iPSC)的有丝分裂后神经元留在原处。在一侧接种皮质神经元后,轴突通过连接导管生长,在另一侧的纹状体神经元中分支——这种排列模拟了单向皮质纹状体连接。我们还开发了一种中等通量的非接触性轴突切断测定法。通过介质射流切断导管中的皮质轴突;然后,脑源性神经营养因子和远端腔室中的纹状体神经元促进轴突再生。由于可以轻松添加更多的导管和腔室,这为模拟复杂的神经元网络以及筛选药物对连接的影响开辟了可能性。