Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA.
Nanoscale Horiz. 2021 Apr 1;6(4):330-340. doi: 10.1039/d0nh00624f. Epub 2021 Feb 18.
Bacterial infections are re-emerging as substantial threats to global health due to the limited selection of antibiotics that are capable of overcoming antibiotic-resistant strains. By deterring such mutations whilst minimizing the need to develop new pathogen-specific antibiotics, immunotherapy offers a broad-spectrum therapeutic solution against bacterial infections. In particular, pathology resulting from excessive immune response (i.e. fibrosis, necrosis, exudation, breath impediment) contributes significantly to negative disease outcome. Herein, we present a nanoparticle that is targeted to activated macrophages and loaded with siRNA against the Irf5 gene. This formulation is able to induce >80% gene silencing in activated macrophages in vivo, and it inhibits the excessive inflammatory response, generating a significantly improved therapeutic outcome in mouse models of bacterial infection. The versatility of the approach is demonstrated using mice with antibiotic-resistant Gram-positive (methicillin-resistant Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) muscle and lung infections, respectively. Effective depletion of the Irf5 gene in macrophages is found to significantly improve the therapeutic outcome of infected mice, regardless of the bacteria strain and type.
由于能够克服抗生素耐药菌株的抗生素选择有限,细菌感染再次成为全球健康的重大威胁。免疫疗法通过阻止这种突变,同时最大限度地减少开发新的针对病原体的抗生素的需求,为细菌感染提供了一种广谱的治疗解决方案。特别是,过度免疫反应(即纤维化、坏死、渗出、呼吸障碍)引起的病变对不良疾病结局有重大影响。在此,我们提出了一种针对激活的巨噬细胞的纳米颗粒,并负载针对 Irf5 基因的 siRNA。该制剂能够在体内诱导激活的巨噬细胞中 >80%的基因沉默,并抑制过度的炎症反应,在细菌感染的小鼠模型中产生显著改善的治疗效果。该方法的多功能性通过使用对具有抗生素耐药性的革兰氏阳性(耐甲氧西林金黄色葡萄球菌)和革兰氏阴性(铜绿假单胞菌)肌肉和肺部感染的小鼠分别进行了证明。无论细菌菌株和类型如何,巨噬细胞中 Irf5 基因的有效耗竭都被发现显著改善了感染小鼠的治疗效果。