Suppr超能文献

正交生物发光探针的双取代荧光素。

Orthogonal Bioluminescent Probes from Disubstituted Luciferins.

出版信息

Biochemistry. 2021 Mar 2;60(8):563-572. doi: 10.1021/acs.biochem.0c00894. Epub 2021 Feb 18.

Abstract

Bioluminescence imaging with luciferase-luciferin pairs is routinely used to monitor cellular functions. Multiple targets can be visualized in tandem using luciferases that process unique substrates, but only a handful of such orthogonal probes are known. Multiplexed studies require additional robust, light-emitting molecules. In this work, we report new luciferins for orthogonal imaging that comprise disubstituted cores. These probes were found to be bright emitters with various engineered luciferases. The unique patterns of light output also provided insight into enzyme-substrate interactions necessary for productive emission. Screening studies identified mutant luciferases that could preferentially process the disubstituted analogues, enabling orthogonal imaging with existing bioluminescent reporters. Further mutational analyses revealed the origins of substrate selectivity. Collectively, this work provides insights into luciferase-luciferin features relevant to bioluminescence and expands the number of probes for multicomponent tracking.

摘要

荧光素酶-荧光素对的生物发光成像是常规用于监测细胞功能的方法。可以使用能够处理独特底物的荧光酶串联可视化多个靶标,但已知的这种正交探针只有少数几种。多重研究需要额外的稳健、发光分子。在这项工作中,我们报告了新的用于正交成像的包含取代核的荧光素,发现这些探针与各种工程化的荧光酶一起是明亮的发射器。独特的光输出模式也为酶-底物相互作用提供了深入的了解,这些相互作用对于产生有效的发射是必要的。筛选研究确定了可以优先处理取代类似物的突变荧光酶,从而可以使用现有的生物发光报告器进行正交成像。进一步的突变分析揭示了底物选择性的起源。总的来说,这项工作深入了解了与生物发光相关的荧光酶-荧光素特性,并扩展了用于多组分跟踪的探针数量。

相似文献

1
Orthogonal Bioluminescent Probes from Disubstituted Luciferins.
Biochemistry. 2021 Mar 2;60(8):563-572. doi: 10.1021/acs.biochem.0c00894. Epub 2021 Feb 18.
2
Building Biological Flashlights: Orthogonal Luciferases and Luciferins for Imaging.
Acc Chem Res. 2019 Nov 19;52(11):3039-3050. doi: 10.1021/acs.accounts.9b00391. Epub 2019 Oct 8.
3
Multicomponent Bioluminescence Imaging with Naphthylamino Luciferins.
Chembiochem. 2021 Aug 17;22(16):2650-2654. doi: 10.1002/cbic.202100202. Epub 2021 Jun 30.
4
Multicomponent Bioluminescence Imaging with a π-Extended Luciferin.
J Am Chem Soc. 2020 Aug 19;142(33):14080-14089. doi: 10.1021/jacs.0c01064. Epub 2020 Aug 4.
5
Orthogonal Luciferase-Luciferin Pairs for Bioluminescence Imaging.
J Am Chem Soc. 2017 Feb 15;139(6):2351-2358. doi: 10.1021/jacs.6b11737. Epub 2017 Feb 3.
6
Cage the firefly luciferin! - a strategy for developing bioluminescent probes.
Chem Soc Rev. 2013 Jan 21;42(2):662-76. doi: 10.1039/c2cs35249d.
7
Rapid and scalable assembly of firefly luciferase substrates.
Org Biomol Chem. 2015 Feb 21;13(7):2117-21. doi: 10.1039/c4ob02529f.
8
Biochemical Analysis Leads to Improved Orthogonal Bioluminescent Tools.
Chembiochem. 2023 Mar 14;24(6):e202200726. doi: 10.1002/cbic.202200726. Epub 2023 Feb 10.
9
Pyridone Luciferins and Mutant Luciferases for Bioluminescence Imaging.
Chembiochem. 2018 Mar 2;19(5):470-477. doi: 10.1002/cbic.201700542. Epub 2018 Jan 31.
10
Brominated Luciferins Are Versatile Bioluminescent Probes.
Chembiochem. 2017 Jan 3;18(1):96-100. doi: 10.1002/cbic.201600564. Epub 2016 Dec 8.

引用本文的文献

1
Caged luciferins enable rapid multicomponent bioluminescence imaging.
Photochem Photobiol. 2024 Jan-Feb;100(1):67-74. doi: 10.1111/php.13814. Epub 2023 May 31.
2
Biochemical Analysis Leads to Improved Orthogonal Bioluminescent Tools.
Chembiochem. 2023 Mar 14;24(6):e202200726. doi: 10.1002/cbic.202200726. Epub 2023 Feb 10.
4
Brightening up Biology: Advances in Luciferase Systems for Imaging.
ACS Chem Biol. 2021 Dec 17;16(12):2707-2718. doi: 10.1021/acschembio.1c00549. Epub 2021 Nov 15.
5
Coumarin luciferins and mutant luciferases for robust multi-component bioluminescence imaging.
Chem Sci. 2021 Aug 2;12(35):11684-11691. doi: 10.1039/d1sc03114g. eCollection 2021 Sep 15.

本文引用的文献

1
Rapid Multicomponent Bioluminescence Imaging Substrate Unmixing.
ACS Chem Biol. 2021 Apr 16;16(4):682-690. doi: 10.1021/acschembio.0c00959. Epub 2021 Mar 17.
2
Red-shifted click beetle luciferase mutant expands the multicolor bioluminescent palette for deep tissue imaging.
iScience. 2020 Dec 26;24(1):101986. doi: 10.1016/j.isci.2020.101986. eCollection 2021 Jan 22.
3
Multicomponent Bioluminescence Imaging with a π-Extended Luciferin.
J Am Chem Soc. 2020 Aug 19;142(33):14080-14089. doi: 10.1021/jacs.0c01064. Epub 2020 Aug 4.
4
Novel NanoLuc substrates enable bright two-population bioluminescence imaging in animals.
Nat Methods. 2020 Aug;17(8):852-860. doi: 10.1038/s41592-020-0889-6. Epub 2020 Jul 13.
6
Building Biological Flashlights: Orthogonal Luciferases and Luciferins for Imaging.
Acc Chem Res. 2019 Nov 19;52(11):3039-3050. doi: 10.1021/acs.accounts.9b00391. Epub 2019 Oct 8.
7
Quantitative dual-color bioluminescence imaging in the mouse brain.
Neurophotonics. 2019 Apr;6(2):025006. doi: 10.1117/1.NPh.6.2.025006. Epub 2019 May 7.
8
Development and Applications of Bioluminescent and Chemiluminescent Reporters and Biosensors.
Annu Rev Anal Chem (Palo Alto Calif). 2019 Jun 12;12(1):129-150. doi: 10.1146/annurev-anchem-061318-115027. Epub 2019 Feb 20.
10
Single-cell bioluminescence imaging of deep tissue in freely moving animals.
Science. 2018 Feb 23;359(6378):935-939. doi: 10.1126/science.aaq1067.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验