Suppr超能文献

π-扩展荧光素的多组分生物发光成像。

Multicomponent Bioluminescence Imaging with a π-Extended Luciferin.

出版信息

J Am Chem Soc. 2020 Aug 19;142(33):14080-14089. doi: 10.1021/jacs.0c01064. Epub 2020 Aug 4.

Abstract

Bioluminescence imaging with luciferase-luciferin pairs is commonly used for monitoring biological processes in cells and whole organisms. Traditional bioluminescent probes are limited in scope, though, as they cannot be easily distinguished in biological environments, precluding efforts to visualize multicellular processes. Additionally, many luciferase-luciferin pairs emit light that is poorly tissue penetrant, hindering efforts to visualize targets in deep tissues. To address these issues, we synthesized a set of π-extended luciferins that were predicted to be red-shifted luminophores. The scaffolds were designed to be rotationally labile such that they produced light only when paired with luciferases capable of enforcing planarity. A luciferin comprising an intramolecular "lock" was identified as a viable light-emitting probe. Native luciferases were unable to efficiently process the analog, but a complementary luciferase was identified via Rosetta-guided enzyme design. The unique enzyme-substrate pair is red-shifted compared to well-known bioluminescent tools. The probe set is also orthogonal to other luciferase-luciferin probes and can be used for multicomponent imaging. Four substrate-resolved luciferases were imaged in a single session. Collectively, this work provides the first example of Rosetta-guided design in engineering bioluminescent tools and expands the scope of orthogonal imaging probes.

摘要

荧光素酶-荧光素对的生物发光成像是常用于监测细胞和整个生物体中的生物过程的方法。然而,传统的生物发光探针具有一定的局限性,因为它们在生物环境中不容易被区分,从而限制了可视化多细胞过程的努力。此外,许多荧光素酶-荧光素对发射的光组织穿透力差,阻碍了在深层组织中可视化靶标的努力。为了解决这些问题,我们合成了一组预测为红移发光体的π 扩展荧光素。这些支架被设计成旋转不稳定的,只有与能够强制平面化的荧光酶结合时才会发光。一个包含分子内“锁”的荧光素被确定为可行的发光探针。天然荧光酶不能有效地处理类似物,但通过罗塞塔导向酶设计鉴定出了互补的荧光酶。与知名的生物发光工具相比,这个独特的酶-底物对具有红移。该探针集也与其他荧光素酶-荧光素对正交,可用于多组分成像。在单个会话中对四个底物分辨的荧光酶进行了成像。总的来说,这项工作提供了罗塞塔导向设计在工程生物发光工具中的第一个例子,并扩展了正交成像探针的范围。

相似文献

1
Multicomponent Bioluminescence Imaging with a π-Extended Luciferin.π-扩展荧光素的多组分生物发光成像。
J Am Chem Soc. 2020 Aug 19;142(33):14080-14089. doi: 10.1021/jacs.0c01064. Epub 2020 Aug 4.
3
Multicomponent Bioluminescence Imaging with Naphthylamino Luciferins.萘基荧光素的多组分生物发光成像。
Chembiochem. 2021 Aug 17;22(16):2650-2654. doi: 10.1002/cbic.202100202. Epub 2021 Jun 30.
4
Orthogonal Bioluminescent Probes from Disubstituted Luciferins.正交生物发光探针的双取代荧光素。
Biochemistry. 2021 Mar 2;60(8):563-572. doi: 10.1021/acs.biochem.0c00894. Epub 2021 Feb 18.
5
Orthogonal Luciferase-Luciferin Pairs for Bioluminescence Imaging.正交荧光素酶-荧光素对用于生物发光成像。
J Am Chem Soc. 2017 Feb 15;139(6):2351-2358. doi: 10.1021/jacs.6b11737. Epub 2017 Feb 3.
6
Expedient Synthesis and Characterization of π-Extended Luciferins.π-扩展荧光素的简便合成与表征。
J Org Chem. 2024 Oct 18;89(20):14625-14633. doi: 10.1021/acs.joc.3c01920. Epub 2023 Dec 14.
7
Red-Shifted Coumarin Luciferins for Improved Bioluminescence Imaging.红色位移香豆素荧光素用于改进生物发光成像。
J Am Chem Soc. 2023 Feb 15;145(6):3335-3345. doi: 10.1021/jacs.2c07220. Epub 2023 Feb 6.

引用本文的文献

1
Bioluminescent Systems for Theranostic Applications.用于治疗应用的生物发光系统。
Int J Mol Sci. 2024 Jul 10;25(14):7563. doi: 10.3390/ijms25147563.
2
Bright Red Bioluminescence from Semisynthetic NanoLuc (sNLuc).半合成 NanoLuc(sNLuc)产生鲜红生物发光。
ACS Chem Biol. 2024 May 17;19(5):1035-1039. doi: 10.1021/acschembio.4c00033. Epub 2024 May 8.
3
Red-Shifted Coumarin Luciferins for Improved Bioluminescence Imaging.红色位移香豆素荧光素用于改进生物发光成像。
J Am Chem Soc. 2023 Feb 15;145(6):3335-3345. doi: 10.1021/jacs.2c07220. Epub 2023 Feb 6.
4
Biochemical Analysis Leads to Improved Orthogonal Bioluminescent Tools.生化分析可得到改进的正交生物发光工具。
Chembiochem. 2023 Mar 14;24(6):e202200726. doi: 10.1002/cbic.202200726. Epub 2023 Feb 10.
6
Multiplexed bioluminescence imaging with a substrate unmixing platform.基于底物解混平台的多重生物发光成像技术
Cell Chem Biol. 2022 Nov 17;29(11):1649-1660.e4. doi: 10.1016/j.chembiol.2022.10.004. Epub 2022 Oct 24.
9
Multicomponent Bioluminescence Imaging with Naphthylamino Luciferins.萘基荧光素的多组分生物发光成像。
Chembiochem. 2021 Aug 17;22(16):2650-2654. doi: 10.1002/cbic.202100202. Epub 2021 Jun 30.
10
Rapid Multicomponent Bioluminescence Imaging Substrate Unmixing.快速多重生物发光成像底物解混。
ACS Chem Biol. 2021 Apr 16;16(4):682-690. doi: 10.1021/acschembio.0c00959. Epub 2021 Mar 17.

本文引用的文献

1
Rapid Multicomponent Bioluminescence Imaging Substrate Unmixing.快速多重生物发光成像底物解混。
ACS Chem Biol. 2021 Apr 16;16(4):682-690. doi: 10.1021/acschembio.0c00959. Epub 2021 Mar 17.
7
Development and Applications of Bioluminescent and Chemiluminescent Reporters and Biosensors.生物发光和化学发光报告基因和生物传感器的发展与应用。
Annu Rev Anal Chem (Palo Alto Calif). 2019 Jun 12;12(1):129-150. doi: 10.1146/annurev-anchem-061318-115027. Epub 2019 Feb 20.
8
Programmable design of orthogonal protein heterodimers.可编程设计正交蛋白异源二聚体。
Nature. 2019 Jan;565(7737):106-111. doi: 10.1038/s41586-018-0802-y. Epub 2018 Dec 19.
9
Genetically encodable bioluminescent system from fungi.真菌基因编码的生物发光系统。
Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):12728-12732. doi: 10.1073/pnas.1803615115. Epub 2018 Nov 26.
10
De novo design of a fluorescence-activating β-barrel.从头设计一个荧光激活的β桶。
Nature. 2018 Sep;561(7724):485-491. doi: 10.1038/s41586-018-0509-0. Epub 2018 Sep 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验