Jayakumar Prakash, Moore Meredith G, Furlough Kenneth A, Uhler Lauren M, Andrawis John P, Koenig Karl M, Aksan Nazan, Rathouz Paul J, Bozic Kevin J
Dell Medical School at the University of Texas at Austin, Austin.
University of Cincinnati College of Medicine, Cincinnati, Ohio.
JAMA Netw Open. 2021 Feb 1;4(2):e2037107. doi: 10.1001/jamanetworkopen.2020.37107.
Decision aids can help inform appropriate selection of total knee replacement (TKR) for advanced knee osteoarthritis (OA). However, few decision aids combine patient education, preference assessment, and artificial intelligence (AI) using patient-reported outcome measurement data to generate personalized estimations of outcomes to augment shared decision-making (SDM).
To assess the effect of an AI-enabled patient decision aid that includes education, preference assessment, and personalized outcome estimations (using patient-reported outcome measurements) on decision quality, patient experience, functional outcomes, and process-level outcomes among individuals with advanced knee OA considering TKR in comparison with education only.
DESIGN, SETTING, AND PARTICIPANTS: This randomized clinical trial at a single US academic orthopedic practice included 129 new adult patients presenting for OA-related knee pain from March 2019 to January 2020. Data were analyzed from April to May 2020.
Patients were randomized into a group that received a decision aid including patient education, preference assessment, and personalized outcome estimations (intervention group) or a group receiving educational material only (control group) alongside usual care.
The primary outcome was decision quality, measured using the Knee OA Decision Quality Instrument (K-DQI). Secondary outcomes were collaborative decision-making (assessed using the CollaboRATE survey), patient satisfaction with consultation (using a numerical rating scale), Knee Injury and Osteoarthritis Outcome Score Joint Replacement (KOOS JR) score, consultation time, TKR rate, and treatment concordance.
A total of 69 patients in the intervention group (46 [67%] women) and 60 patients in the control group (37 [62%] women) were included in the analysis. The intervention group showed better decisional quality (K-DQI mean difference, 20.0%; SE, 3.02; 95% CI, 14.2%-26.1%; P < .001), collaborative decision-making (CollaboRATE, 8 of 69 [12%] vs 28 of 60 [47%] patients below median; P < .001), satisfaction (numerical rating scale, 9 of 65 [14%] vs 19 of 58 [33%] patients below median; P = .01), and improved functional outcomes at 4 to 6 months (mean [SE] KOOS JR, 4.9 [2.24] points higher in intervention group; 95% CI, 0.8-9.0 points; P = .02). The intervention did not significantly affect consultation time (mean [SE] difference, 2.23 [2.18] minutes; P = .31), TKR rates (16 of 69 [23%] vs 7 of 60 [12%] patients; P = .11), or treatment concordance (58 of 69 [84%] vs 44 of 60 [73%] patients; P = .19).
In this randomized clinical trial, an AI-enabled decision aid significantly improved decision quality, level of SDM, satisfaction, and physical limitations without significantly impacting consultation times, TKR rates, or treatment concordance in patients with knee OA considering TKR. Decision aids using a personalized, data-driven approach can enhance SDM in the management of knee OA.
ClinicalTrials.gov Identifier: NCT03956004.
决策辅助工具有助于为晚期膝骨关节炎(OA)患者选择全膝关节置换术(TKR)提供适当信息。然而,很少有决策辅助工具将患者教育、偏好评估和人工智能(AI)相结合,利用患者报告的结局测量数据来生成个性化的结局估计,以增强共同决策(SDM)。
评估一种具备人工智能的患者决策辅助工具(包括教育、偏好评估和个性化结局估计(使用患者报告的结局测量))对考虑进行TKR的晚期膝OA患者的决策质量、患者体验、功能结局和过程水平结局的影响,并与仅进行教育的情况进行比较。
设计、设置和参与者:这项在美国一家学术骨科诊所进行的随机临床试验纳入了129名新成年患者,这些患者在2019年3月至2020年1月期间因OA相关的膝关节疼痛前来就诊。数据于2020年4月至5月进行分析。
患者被随机分为一组,接受包括患者教育、偏好评估和个性化结局估计的决策辅助工具(干预组),或一组仅接受教育材料(对照组)并接受常规护理。
主要结局是决策质量,使用膝关节OA决策质量工具(K-DQI)进行测量。次要结局包括共同决策(使用CollaboRATE调查进行评估)、患者对咨询的满意度(使用数字评分量表)、膝关节损伤和骨关节炎结局评分关节置换(KOOS JR)评分、咨询时间、TKR率和治疗依从性。
分析纳入了干预组的69名患者(46名[67%]女性)和对照组的60名患者(37名[62%]女性)。干预组在决策质量方面表现更好(K-DQI平均差异为20.0%;标准误为3.02;95%置信区间为14.2%-26.1%;P < .001),在共同决策方面(CollaboRATE,69名患者中有8名[12%]低于中位数,而60名患者中有28名[47%]低于中位数;P < .001),在满意度方面(数字评分量表,65名患者中有9名[14%]低于中位数,而58名患者中有19名[33%]低于中位数;P = .01),并且在4至6个月时功能结局有所改善(干预组平均[标准误]KOOS JR高4.9[2.24]分;95%置信区间为0.8-9.0分;P = .02)。干预对咨询时间(平均[标准误]差异为2.23[2.18]分钟;P = .31)、TKR率(69名患者中有16名[23%],而60名患者中有7名[12%];P = .11)或治疗依从性(69名患者中有58名[84%],而60名患者中有44名[73%];P = .19)没有显著影响。
在这项随机临床试验中,一种具备人工智能的决策辅助工具显著提高了决策质量、SDM水平、满意度和身体限制,而对考虑进行TKR的膝OA患者的咨询时间、TKR率或治疗依从性没有显著影响。使用个性化、数据驱动方法的决策辅助工具可以增强膝OA管理中的SDM。
ClinicalTrials.gov标识符:NCT03956004。