Suppr超能文献

从视频中对软连续体物体的动力学进行骨架化处理。

Skeletonizing the Dynamics of Soft Continuum Body from Video.

机构信息

Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan.

出版信息

Soft Robot. 2022 Apr;9(2):201-211. doi: 10.1089/soro.2020.0110. Epub 2021 Feb 18.

Abstract

Soft continuum bodies have demonstrated their effectiveness in generating flexible and adaptive functionalities by capitalizing on the rich deformability of soft material. Compared with a rigid-body robot, it is in general difficult to model and emulate the morphology dynamics of a soft continuum body. In addition, a soft continuum body potentially has an infinite degree of freedom, requiring considerable labor to manually annotate its dynamics from external sensory data such as video. In this study, we propose a novel noninvasive framework for automatically extracting the skeletal dynamics from video of a soft continuum body and show the applications and effectiveness of our framework. First, we demonstrate that our framework can extract skeletal dynamics from animal videos, which can be effectively utilized for the analysis of soft continuum body including animal motion. Next, we focus on a soft continuum arm, a commonly used platform in soft robotics, and evaluate the potential information-processing capability. Normally, to control such a high-dimensional system, it is necessary to introduce many sensors to completely capture the motion dynamics, causing the deterioration of the material's softness. We illustrate that the evaluation of the memory capacity and sensory reconstruction error enables us to verify the minimum number of sensors sufficient for fully grasping the state dynamics, which is highly useful in designing a sensor arrangement for a soft robot. Also, we release the software developed in this study as open source for biology and soft robotics communities, which contributes to automating the annotation process required for the motion analysis of soft continuum bodies.

摘要

软体连续体通过利用软物质的丰富可变形性,已经证明了其在产生灵活和自适应功能方面的有效性。与刚体机器人相比,通常难以对软体连续体的形态动力学进行建模和仿真。此外,软体连续体具有潜在的无限自由度,需要大量的人工劳动才能从视频等外部传感器数据中手动标注其动力学。在本研究中,我们提出了一种新颖的非侵入式框架,用于从软体连续体的视频中自动提取骨骼动力学,并展示了我们框架的应用和有效性。首先,我们证明了我们的框架可以从动物视频中提取骨骼动力学,这可以有效地用于分析包括动物运动在内的软体连续体。接下来,我们专注于软体连续臂,这是软体机器人中常用的平台,并评估了其潜在的信息处理能力。通常,为了控制这样一个高维系统,需要引入许多传感器来完全捕捉运动动力学,这会导致材料柔软性的恶化。我们说明了评估记忆容量和感官重建误差使我们能够验证完全掌握状态动力学所需的最小传感器数量,这对于设计软体机器人的传感器布局非常有用。此外,我们将本研究中开发的软件作为开源软件发布,供生物学和软体机器人社区使用,这有助于自动化软体连续体运动分析所需的注释过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed85/9057898/dc7070a1aaa1/soro.2020.0110_figure1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验