Nakajima Kohei, Hauser Helmut, Li Tao, Pfeifer Rolf
1 JST , PRESTO, Saitama, Japan .
2 Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo , Tokyo, Japan .
Soft Robot. 2018 Jun;5(3):339-347. doi: 10.1089/soro.2017.0075. Epub 2018 Apr 30.
Soft materials are increasingly utilized for various purposes in many engineering applications. These materials have been shown to perform a number of functions that were previously difficult to implement using rigid materials. Here, we argue that the diverse dynamics generated by actuating soft materials can be effectively used for machine learning purposes. This is demonstrated using a soft silicone arm through a technique of multiplexing, which enables the rich transient dynamics of the soft materials to be fully exploited as a computational resource. The computational performance of the soft silicone arm is examined through two standard benchmark tasks. Results show that the soft arm compares well to or even outperforms conventional machine learning techniques under multiple conditions. We then demonstrate that this system can be used for the sensory time series prediction problem for the soft arm itself, which suggests its immediate applicability to a real-world machine learning problem. Our approach, on the one hand, represents a radical departure from traditional computational methods, whereas on the other hand, it fits nicely into a more general perspective of computation by way of exploiting the properties of physical materials in the real world.
在许多工程应用中,软材料正越来越多地用于各种目的。这些材料已被证明能执行许多以前使用刚性材料难以实现的功能。在此,我们认为通过驱动软材料产生的多种动力学可以有效地用于机器学习目的。这通过一种复用技术在一个柔软的硅胶臂上得到了证明,该技术能够充分利用软材料丰富的瞬态动力学作为一种计算资源。通过两项标准基准任务来检验柔软硅胶臂的计算性能。结果表明,在多种条件下,软臂与传统机器学习技术相比表现良好,甚至更胜一筹。然后,我们证明了该系统可用于软臂自身的感官时间序列预测问题,这表明它可直接应用于实际的机器学习问题。一方面,我们的方法与传统计算方法截然不同;另一方面,它通过利用现实世界中物理材料的特性,很好地融入了更一般的计算视角。