文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

长链非编码 RNA 和信使 RNA 在紫杉醇诱导的周围神经病变大鼠模型脊髓中的转录组谱分析,确定了潜在的介导神经炎症和疼痛的机制。

Transcriptome profiling of long noncoding RNAs and mRNAs in spinal cord of a rat model of paclitaxel-induced peripheral neuropathy identifies potential mechanisms mediating neuroinflammation and pain.

机构信息

Department of Neurobiology and Acupuncture Research, The Third Clinical Medical College, Zhejiang Chinese Medical University, Key Laboratory of Acupuncture and Neurology of Zhejiang Province, 548 Binwen Road, Hangzhou, 310053, China.

出版信息

J Neuroinflammation. 2021 Feb 18;18(1):48. doi: 10.1186/s12974-021-02098-y.


DOI:10.1186/s12974-021-02098-y
PMID:33602238
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7890637/
Abstract

BACKGROUND: Paclitaxel is a widely prescribed chemotherapy drug for treating solid tumors. However, paclitaxel-induced peripheral neuropathy (PIPN) is a common adverse effect during paclitaxel treatment, which results in sensory abnormalities and neuropathic pain among patients. Unfortunately, the mechanisms underlying PIPN still remain poorly understood. Long noncoding RNAs (lncRNAs) are novel and promising targets for chronic pain treatment, but their involvement in PIPN still remains unexplored. METHODS: We established a rat PIPN model by repetitive paclitaxel application. Immunostaining, RNA sequencing (RNA-Seq) and bioinformatics analysis were performed to study glia cell activation and explore lncRNA/mRNA expression profiles in spinal cord dorsal horn (SCDH) of PIPN model rats. qPCR and protein assay were used for further validation. RESULTS: PIPN model rats developed long-lasting mechanical and thermal pain hypersensitivities in hind paws, accompanied with astrocyte and microglia activation in SCDH. RNA-Seq identified a total of 814 differentially expressed mRNAs (DEmRNA) (including 467 upregulated and 347 downregulated) and 412 DElncRNAs (including 145 upregulated and 267 downregulated) in SCDH of PIPN model rats vs. control rats. Functional analysis of DEmRNAs and DElncRNAs identified that the most significantly enriched pathways include immune/inflammatory responses and neurotrophin signaling pathways, which are all important mechanisms mediating neuroinflammation, central sensitization, and chronic pain. We further compared our dataset with other published datasets of neuropathic pain and identified a core set of immune response-related genes extensively involved in PIPN and other neuropathic pain conditions. Lastly, a competing RNA network analysis of DElncRNAs and DEmRNAs was performed to identify potential regulatory networks of lncRNAs on mRNA through miRNA sponging. CONCLUSIONS: Our study provided the transcriptome profiling of DElncRNAs and DEmRNAs and uncovered immune and inflammatory responses were predominant biological events in SCDH of the rat PIPN model. Thus, our study may help to identify promising genes or signaling pathways for PIPN therapeutics.

摘要

背景:紫杉醇是一种广泛用于治疗实体瘤的化疗药物。然而,紫杉醇引起的周围神经病变(PIPN)是紫杉醇治疗过程中的一种常见不良反应,导致患者出现感觉异常和神经病理性疼痛。不幸的是,PIPN 的发病机制仍知之甚少。长链非编码 RNA(lncRNA)是慢性疼痛治疗的新的有前途的靶点,但它们在 PIPN 中的作用仍未被探索。

方法:我们通过重复应用紫杉醇来建立大鼠 PIPN 模型。通过免疫染色、RNA 测序(RNA-Seq)和生物信息学分析来研究小胶质细胞和星形胶质细胞的激活,并探索 PIPN 模型大鼠脊髓背角(SCDH)中的 lncRNA/mRNA 表达谱。通过 qPCR 和蛋白测定进行进一步验证。

结果:PIPN 模型大鼠的后爪出现了持久的机械性和热痛敏,同时 SCDH 中的星形胶质细胞和小胶质细胞被激活。RNA-Seq 共鉴定出 814 个差异表达的 mRNA(DEmRNA)(包括 467 个上调和 347 个下调)和 412 个差异表达的长链非编码 RNA(DElncRNA)(包括 145 个上调和 267 个下调)在 PIPN 模型大鼠与对照组大鼠的 SCDH 中。DEmRNA 和 DElncRNA 的功能分析表明,最显著富集的途径包括免疫/炎症反应和神经营养素信号通路,这些途径都是介导神经炎症、中枢敏化和慢性疼痛的重要机制。我们进一步将我们的数据集与其他已发表的神经病理性疼痛数据集进行比较,发现了一组广泛涉及 PIPN 和其他神经病理性疼痛的免疫反应相关基因。最后,对 DElncRNA 和 DEmRNA 进行竞争性 RNA 网络分析,通过 miRNA 海绵作用识别 lncRNA 对 mRNA 的潜在调控网络。

结论:我们的研究提供了 DElncRNA 和 DEmRNA 的转录组图谱,并揭示了免疫和炎症反应是大鼠 PIPN 模型 SCDH 中的主要生物学事件。因此,我们的研究可能有助于确定治疗 PIPN 的有前途的基因或信号通路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7be/7890637/21a3ef5659e4/12974_2021_2098_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7be/7890637/1f724511e826/12974_2021_2098_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7be/7890637/995ed35c2f13/12974_2021_2098_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7be/7890637/2a2d7b64e4d0/12974_2021_2098_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7be/7890637/b594f5a66515/12974_2021_2098_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7be/7890637/7719e9d98d35/12974_2021_2098_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7be/7890637/f5fbfbeb4bd1/12974_2021_2098_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7be/7890637/d11057cf03dd/12974_2021_2098_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7be/7890637/3d4b2356425e/12974_2021_2098_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7be/7890637/d3879d0a8c12/12974_2021_2098_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7be/7890637/4952c4a4aa7d/12974_2021_2098_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7be/7890637/21a3ef5659e4/12974_2021_2098_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7be/7890637/1f724511e826/12974_2021_2098_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7be/7890637/995ed35c2f13/12974_2021_2098_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7be/7890637/2a2d7b64e4d0/12974_2021_2098_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7be/7890637/b594f5a66515/12974_2021_2098_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7be/7890637/7719e9d98d35/12974_2021_2098_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7be/7890637/f5fbfbeb4bd1/12974_2021_2098_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7be/7890637/d11057cf03dd/12974_2021_2098_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7be/7890637/3d4b2356425e/12974_2021_2098_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7be/7890637/d3879d0a8c12/12974_2021_2098_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7be/7890637/4952c4a4aa7d/12974_2021_2098_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7be/7890637/21a3ef5659e4/12974_2021_2098_Fig11_HTML.jpg

相似文献

[1]
Transcriptome profiling of long noncoding RNAs and mRNAs in spinal cord of a rat model of paclitaxel-induced peripheral neuropathy identifies potential mechanisms mediating neuroinflammation and pain.

J Neuroinflammation. 2021-2-18

[2]
Transcriptomic analysis of long noncoding RNAs and mRNAs expression profiles in the spinal cord of bone cancer pain rats.

Mol Brain. 2020-3-24

[3]
Expression profiling of spinal cord dorsal horn in a rat model of complex regional pain syndrome type-I uncovers potential mechanisms mediating pain and neuroinflammation responses.

J Neuroinflammation. 2020-5-23

[4]
Analyses of long non-coding RNA and mRNA profiles in the spinal cord of rats using RNA sequencing during the progression of neuropathic pain in an SNI model.

RNA Biol. 2017-9-29

[5]
Transcriptome analysis reveals dysregulation of inflammatory and neuronal function in dorsal root ganglion of paclitaxel-induced peripheral neuropathy rats.

Mol Pain. 2023

[6]
Identification of lncRNA expression profile in the spinal cord of mice following spinal nerve ligation-induced neuropathic pain.

Mol Pain. 2015-7-17

[7]
Dual PI3Kδ/γ Inhibitor Duvelisib Prevents Development of Neuropathic Pain in Model of Paclitaxel-Induced Peripheral Neuropathy.

J Neurosci. 2022-3-2

[8]
Losartan attenuates neuroinflammation and neuropathic pain in paclitaxel-induced peripheral neuropathy.

J Cell Mol Med. 2020-7

[9]
Screening key lncRNAs for human rectal adenocarcinoma based on lncRNA-mRNA functional synergistic network.

Cancer Med. 2019-5-22

[10]
Sex differences in PD-L1-induced analgesia in paclitaxel-induced peripheral neuropathy mice depend on TRPV1-based inhibition of CGRP.

CNS Neurosci Ther. 2024-7

引用本文的文献

[1]
Evaluation and application analysis of animal models of PIPNP based on data mining.

Open Life Sci. 2025-7-8

[2]
The involvement of spinal lncRNA RT1-CE10 in chronic functional visceral pain.

Mol Pain. 2025

[3]
Pia Mater-Penetrable Lipopolymer Nanoparticles for Gliocyte-Targeted IL-10 mRNA Therapy Alleviate Paclitaxel-Induced Peripheral Neuropathy.

Adv Sci (Weinh). 2025-6

[4]
Electroacupuncture alleviates paclitaxel-induced peripheral neuropathy by reducing CCL2-mediated macrophage infiltration in sensory ganglia and sciatic nerve.

Chin Med. 2025-1-13

[5]
Chemokine CXCL13-CXCR5 signaling in neuroinflammation and pathogenesis of chronic pain and neurological diseases.

Cell Mol Biol Lett. 2024-10-29

[6]
Targeting dorsal root ganglia for chemotherapy-induced peripheral neuropathy: from bench to bedside.

Ther Adv Neurol Disord. 2024-9-20

[7]
Otilonium bromide ameliorates pulmonary fibrosis in mice through activating phosphatase PPM1A.

Acta Pharmacol Sin. 2025-1

[8]
Degenerative and regenerative peripheral processes are associated with persistent painful chemotherapy-induced neuropathies in males and females.

Sci Rep. 2024-7-30

[9]
Well-defined alginate oligosaccharides ameliorate joint pain and inflammation in a mouse model of gouty arthritis.

Theranostics. 2024

[10]
The Potential Antinociceptive Effect and Mechanism of L. Extract on Paclitaxel-Induced Neuropathic Pain in Rats Uncovered by Multi-Omics Analysis.

Molecules. 2024-4-25

本文引用的文献

[1]
IL-33/ST2 induces neutrophil-dependent reactive oxygen species production and mediates gout pain.

Theranostics. 2020

[2]
Selective activation of metabotropic glutamate receptor 7 blocks paclitaxel-induced acute neuropathic pain and suppresses spinal glial reactivity in rats.

Psychopharmacology (Berl). 2021-1

[3]
Central Nervous System Targets: Glial Cell Mechanisms in Chronic Pain.

Neurotherapeutics. 2020-7

[4]
Chemogenetic Regulation of CX3CR1-Expressing Microglia Using Gi-DREADD Exerts Sex-Dependent Anti-Allodynic Effects in Mouse Models of Neuropathic Pain.

Front Pharmacol. 2020-6-19

[5]
Chemokines in chronic pain: cellular and molecular mechanisms and therapeutic potential.

Pharmacol Ther. 2020-8

[6]
Expression profiling of spinal cord dorsal horn in a rat model of complex regional pain syndrome type-I uncovers potential mechanisms mediating pain and neuroinflammation responses.

J Neuroinflammation. 2020-5-23

[7]
Involvement of the Sodium Channel Nav1.7 in Paclitaxel-induced Peripheral Neuropathy through ERK1/2 Signaling in Rats.

Curr Neurovasc Res. 2020

[8]
Taxane-induced neurotoxicity: Pathophysiology and therapeutic perspectives.

Br J Pharmacol. 2020-7

[9]
Long noncoding RNA H19 in the injured dorsal root ganglion contributes to peripheral nerve injury-induced pain hypersensitivity.

Transl Perioper Pain Med. 2020

[10]
Electroacupuncture Treatment Attenuates Paclitaxel-Induced Neuropathic Pain in Rats via Inhibiting Spinal Glia and the TLR4/NF-κB Pathway.

J Pain Res. 2020-1-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索