(1)The London Centre for Integrative Research on Agriculture and Health, London, UK; (2)Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA.
(3)Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands.
J Acad Nutr Diet. 2021 May;121(5):854-871.e6. doi: 10.1016/j.jand.2020.12.024. Epub 2021 Feb 15.
Valid and efficient tools for measuring and tracking diet quality globally are lacking.
The objective of the study was to develop and evaluate a new tool for rapid and cost-efficient diet quality assessment.
Two screener versions were designed using Prime Diet Quality Score (PDQS), one in a 24-hour recall (PDQS-24HR) and another in a 30-day (PDQS-30D) food frequency format. Participants completed two 24-hour diet recalls using the Automated Self-Administered 24-hour Dietary Assessment Tool (ASA24) and 2 web-based diet quality questionnaires 7 to 30 days apart in April and May 2019. Both dichotomous/trichotomous and granular scoring versions were tried for each screener.
PARTICIPANTS/SETTING: The study included 290 nonpregnant, nonlactating US women (mean age ± standard deviation 41 ± 11 years) recruited via Amazon Mechanical Turk.
The main outcome measures were Spearman rank correlation coefficients and linear regression beta-coefficients between ASA24 nutrient intakes from foods and beverages and PDQS values.
The Spearman rank correlation and linear regression were used to evaluate associations of the PDQS values with ASA24 nutrient intakes from food, both crude and energy-adjusted. Correlations were de-attenuated for within-person variation in 24-hour recalls. Wolfe's test was used to compare correlations of the 2 screening instruments (PDQS-24HR and PDQS-30D) with the ASA24. Associations between the ASA24 Healthy Eating Index 2015 and the PDQS values were also evaluated.
Positive, statistically significant rank correlations between the PDQS-24HR values and energy-adjusted nutrients from ASA24 for fiber (r = 0.53), magnesium (r = 0.51), potassium (r = 0.48), vitamin E (r = 0.40), folate (r = 0.37), vitamin C (r = 0.36), vitamin A (r = 0.33), vitamin B6 (r = 0.31), zinc (r = 0.25), and iron (r = 0.21); and inverse correlations for saturated fatty acids (r = -0.19), carbohydrates (r = -0.22), and added sugar (r = -0.34) were observed. Correlations of nutrient intakes assessed by ASA24 with the PDQS-30D were not significantly different from those with the PDQS-24HR. Positive, statistically significant correlations between the ASA24 Healthy Eating Index 2015 and the PDQS-24HR (r = 0.61) and the PDQS-30D (r = 0.60) were also found.
The results of an initial evaluation of the PDQS-based diet quality screeners are promising. Correlations and associations between the PDQS values and nutrient intakes were of acceptable strength and in the expected directions, and the PDQS values had moderately strong correlations with the total Healthy Eating Index 2015 score. Future work should include evaluating the screeners in other population groups, including men, and piloting it across low- and middle-income countries.
目前缺乏有效的、能够在全球范围内衡量和跟踪饮食质量的工具。
本研究旨在开发和评估一种新的工具,用于快速、高效地评估饮食质量。
使用 Prime 饮食质量评分(PDQS)设计了两个筛选器版本,一个是 24 小时回顾(PDQS-24HR),另一个是 30 天(PDQS-30D)的食物频率格式。参与者在 2019 年 4 月和 5 月,通过亚马逊 Mechanical Turk 招募了 290 名非怀孕、非哺乳期的美国女性(平均年龄±标准差 41±11 岁),完成了两次 24 小时饮食回忆和两次基于网络的饮食质量问卷,两次问卷的间隔为 7 至 30 天。对于每个筛选器,尝试了二分法/三分法和粒度评分版本。
参与者/设置:本研究包括 290 名非怀孕、非哺乳期的美国女性(平均年龄±标准差 41±11 岁),通过亚马逊 Mechanical Turk 招募。
主要观察指标是 ASA24 食物和饮料中营养素摄入量与 PDQS 值之间的 Spearman 秩相关系数和线性回归β系数。
使用 Spearman 秩相关和线性回归评估 PDQS 值与 ASA24 食物中营养素摄入量之间的关联,包括未调整和能量调整后的关联。为了减少 24 小时内回忆的个体内变异,对相关性进行了衰减。沃尔夫检验用于比较 2 种筛选工具(PDQS-24HR 和 PDQS-30D)与 ASA24 的相关性。还评估了 ASA24 健康饮食指数 2015 与 PDQS 值之间的相关性。
PDQS-24HR 值与 ASA24 能量调整后的营养素之间存在正相关,且具有统计学意义,包括纤维(r=0.53)、镁(r=0.51)、钾(r=0.48)、维生素 E(r=0.40)、叶酸(r=0.37)、维生素 C(r=0.36)、维生素 A(r=0.33)、维生素 B6(r=0.31)、锌(r=0.25)和铁(r=0.21);与饱和脂肪酸(r=-0.19)、碳水化合物(r=-0.22)和添加糖(r=-0.34)呈负相关。与 ASA24 评估的营养素摄入量相关的 PDQS-30D 的相关性与 PDQS-24HR 没有显著差异。还发现 ASA24 健康饮食指数 2015 与 PDQS-24HR(r=0.61)和 PDQS-30D(r=0.60)之间存在正相关。
基于 PDQS 的饮食质量筛选器的初步评估结果是有希望的。PDQS 值与营养素摄入量之间的相关性和关联具有可接受的强度和预期方向,PDQS 值与总健康饮食指数 2015 评分具有中等强度的相关性。未来的工作应包括在其他人群(包括男性)中评估筛选器,并在中低收入国家进行试点。