Max Planck Institute for Dynamics and Self-Organization (MPIDS), Göttingen, Germany.
Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, UK.
Nat Nanotechnol. 2023 Jan;18(1):79-85. doi: 10.1038/s41565-022-01258-2. Epub 2022 Dec 12.
A hallmark of living systems is the ability to employ a common set of building blocks that can self-organize into a multitude of different structures. This capability can only be afforded in non-equilibrium conditions, as evident from the energy-consuming nature of the plethora of such dynamical processes. To achieve automated dynamical control of such self-assembled structures and transitions between them, we need to identify the fundamental aspects of non-equilibrium dynamics that can enable such processes. Here we identify programmable non-reciprocal interactions as a tool to achieve such functionalities. The design rule is composed of reciprocal interactions that lead to the equilibrium assembly of the different structures, through a process denoted as multifarious self-assembly, and non-reciprocal interactions that give rise to non-equilibrium dynamical transitions between the structures. The design of such self-organized shape-shifting structures can be implemented at different scales, from nucleic acids and peptides to proteins and colloids.
生命系统的一个显著特点是能够利用一组通用的构建模块,这些模块可以自我组织成多种不同的结构。这种能力只能在非平衡条件下实现,因为从大量这样的动态过程的能量消耗性质就可以明显看出这一点。为了实现对这些自组装结构及其之间的转换的自动动态控制,我们需要确定能够实现这些过程的非平衡动力学的基本方面。在这里,我们将可编程非互易相互作用识别为实现这些功能的工具。设计规则由互易相互作用组成,这些相互作用通过一个称为多样自组装的过程导致不同结构的平衡组装,而非互易相互作用则导致结构之间的非平衡动力学转换。这种自组织形状转换结构的设计可以在不同的尺度上实现,从核酸和肽到蛋白质和胶体。