Suppr超能文献

蔗糖的利用途径对细胞内多糖代谢有影响。 (注:原文“Affects Intracellular Polysaccharide Metabolism”前少了主语,根据语境推测可能是某个具体事物,翻译时补充完整使句子通顺。) 原英文表述存在语法错误,正确的应该是 “The Route of Sucrose Utilization by [具体事物] Affects Intracellular Polysaccharide Metabolism.” )

The Route of Sucrose Utilization by Affects Intracellular Polysaccharide Metabolism.

作者信息

Costa Oliveira Bárbara Emanoele, Ricomini Filho Antônio Pedro, Burne Robert A, Zeng Lin

机构信息

Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States.

Department of Biosciences, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil.

出版信息

Front Microbiol. 2021 Feb 2;12:636684. doi: 10.3389/fmicb.2021.636684. eCollection 2021.

Abstract

converts extracellular sucrose (Suc) into exopolysaccharides (EPS) by glucosyl-transferase and fructosyl-transferase enzymes and internalizes Suc for fermentation through the phosphotransferase system (PTS). Here, we examined how altering the routes for sucrose utilization impacts intracellular polysaccharide [IPS; glycogen, ()] metabolism during carbohydrate starvation. Strain UA159 (WT), a mutant lacking all exo-enzymes for sucrose utilization (MMZ952), and a CcpA-deficient mutant () were cultured with sucrose or a combination of glucose and fructose, followed by carbohydrate starvation. At baseline (0h), and after 4 and 24h of starvation, cells were evaluated for mRNA levels of the operon, IPS storage, glucose-1-phosphate (G1P) concentrations, viability, and PTS activities. A pH drop assay was performed in the absence of carbohydrates at the baseline to measure acid production. We observed operon activation in response to starvation (<0.05) in all strains, however, such activation was significantly delayed and reduced in magnitude when EPS synthesis was involved (<0.05). Enhanced acidification and greater G1P concentrations were observed in the sucrose-treated group, but mostly in strains capable of producing EPS (<0.05). Importantly, only the WT exposed to sucrose was able to synthesize IPS during starvation. Contrary to CcpA-proficient strains, IPS was progressively degraded during starvation in , which also showed increased operon expression and greater PTS activities at baseline. Therefore, sucrose metabolism by secreted enzymes affects the capacity of in synthesizing IPS and converting it into organic acids, without necessarily inducing greater expression of the operon.

摘要

通过葡糖基转移酶和果糖基转移酶将细胞外蔗糖(Suc)转化为胞外多糖(EPS),并通过磷酸转移酶系统(PTS)将蔗糖内化用于发酵。在此,我们研究了改变蔗糖利用途径如何影响碳水化合物饥饿期间细胞内多糖[IPS;糖原,()]的代谢。将菌株UA159(野生型)、缺乏所有蔗糖利用外切酶的突变体(MMZ952)和CcpA缺陷突变体()用蔗糖或葡萄糖与果糖的组合进行培养,随后进行碳水化合物饥饿处理。在基线(0小时)以及饥饿4小时和24小时后,评估细胞中操纵子的mRNA水平、IPS储存、葡萄糖-1-磷酸(G1P)浓度、活力和PTS活性。在基线时于无碳水化合物的情况下进行pH下降试验以测量酸产生。我们观察到所有菌株在饥饿时(<0.05)操纵子均被激活,然而,当涉及EPS合成时,这种激活显著延迟且幅度降低(<0.05)。在蔗糖处理组中观察到增强的酸化和更高的G1P浓度,但主要在能够产生EPS的菌株中(<0.05)。重要的是,只有暴露于蔗糖的野生型能够在饥饿期间合成IPS。与CcpA功能正常的菌株相反,在饥饿期间IPS在中逐渐降解,其在基线时也显示出操纵子表达增加和更高的PTS活性。因此,通过分泌酶进行的蔗糖代谢影响了合成IPS并将其转化为有机酸的能力,而不一定诱导操纵子的更高表达。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c454/7884614/63cec218dff7/fmicb-12-636684-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验