Suppr超能文献

基于犹豫模糊语言多准则决策的新冠肺炎患者疼痛治疗评估

Pain Treatment Evaluation in COVID-19 Patients with Hesitant Fuzzy Linguistic Multicriteria Decision-Making.

作者信息

Batur Sir G Didem, Sir Ender

机构信息

Department of Industrial Engineering, Gazi University, Ankara 06570, Turkey.

Department of Algology and Pain Medicine, Health Sciences University, Gülhane Training and Research Hospital, Ankara 06010, Turkey.

出版信息

J Healthc Eng. 2021 Feb 1;2021:8831114. doi: 10.1155/2021/8831114. eCollection 2021.

Abstract

The coronavirus disease 2019 (COVID-19) has emerged as a worldwide pandemic since March 2020. Although most patients complain of moderate or severe pain, these symptoms are generally underestimated and appropriate treatment is not applied. This study aims to guide physicians in selecting and ranking various alternatives for the treatment of pain in COVID-19 patients. However, the choice of treatment for pain requires the consideration of many different conflicting criteria. Therefore, we have studied this problem as a multicriteria decision-making problem. Throughout the solution procedure, first, the criteria and subcriteria affecting the preferences are defined. Then, weight values are determined with respect to these criteria, as they have different degrees of importance for the problem. At this stage, hesitant fuzzy linguistic term sets (HFLTSs) are used, and thus, experts can convey their ideas more accurately. In this first phase of the study, an HFLTS integrated Analytic Hierarchy Process (AHP) method is utilized. Subsequently, possible treatment alternatives are evaluated by using the Vise Kriterijumska Optimizacija I Kompromisno Resenje (VIKOR) method. According to the results obtained by considering expert evaluations, the most preferred treatment is the administration of paracetamol, followed by interventional treatments, opioids, and nonsteroidal anti-inflammatory drugs (NSAIDs), respectively. With this study, it is ensured that a more accurate method is followed by eliminating possible mistakes due to the subjective evaluations of experts in the process of determining pain treatment. This method can also be used in different patient and disease groups.

摘要

自2020年3月以来,2019冠状病毒病(COVID-19)已演变成一场全球大流行。尽管大多数患者抱怨有中度或重度疼痛,但这些症状通常被低估,且未得到适当治疗。本研究旨在指导医生选择和排序治疗COVID-19患者疼痛的各种替代方案。然而,疼痛治疗方案的选择需要考虑许多不同且相互冲突的标准。因此,我们将这个问题作为一个多标准决策问题来研究。在整个求解过程中,首先定义影响偏好的标准和子标准。然后,针对这些标准确定权重值,因为它们对该问题具有不同程度的重要性。在此阶段,使用犹豫模糊语言术语集(HFLTSs),这样专家可以更准确地表达他们的想法。在研究的第一阶段,采用了一种HFLTS集成层次分析法(AHP)。随后,使用理想解排序法(VIKOR)对可能的治疗方案进行评估。根据考虑专家评估得出的结果,最优选的治疗方法是服用对乙酰氨基酚,其次分别是介入治疗、阿片类药物和非甾体抗炎药(NSAIDs)。通过这项研究,确保了在确定疼痛治疗过程中,通过消除专家主观评估可能导致的错误,遵循一种更准确的方法。该方法也可用于不同的患者和疾病群体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4dc7/7872770/a06cefba205a/JHE2021-8831114.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验