Suppr超能文献

胎儿心率记录中连续漏失样本的估计

Estimation of Consecutively Missed Samples in Fetal Heart Rate Recordings.

作者信息

Feng Guanchao, Quirk J Gerald, Heiselman Cassandra, Djurić Petar M

机构信息

Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY 11794, USA.

Department of Obstetrics/Gynecology, Stony Brook University Hospital, Stony Brook University, Stony Brook, NY 11794, USA.

出版信息

Proc Eur Signal Process Conf EUSIPCO. 2020;2020:1080-1084. doi: 10.23919/eusipco47968.2020.9287490. Epub 2020 Dec 18.

Abstract

During labor, fetal heart rate (FHR) is monitored externally using Doppler ultrasound. This is done continuously, but for various reasons (e.g., fetal or maternal movements) the system does not record any samples for varying periods of time. In many settings, it would be quite beneficial to estimate the missing samples. In this paper, we propose a (deep) Gaussian process-based approach for estimation of consecutively missing samples in FHR recordings. The method relies on similarities in the state space and on exploiting the concept of attractor manifolds. The proposed approach was tested on a short segment of real FHR recordings. The experimental results indicate that the proposed approach is able to provide more reliable results in comparison to several interpolation methods that are commonly applied for processing of FHR signals.

摘要

在分娩过程中,使用多普勒超声对胎儿心率(FHR)进行外部监测。这是持续进行的,但由于各种原因(例如胎儿或母体运动),系统会在不同时间段内没有记录任何样本。在许多情况下,估计缺失的样本将非常有益。在本文中,我们提出了一种基于(深度)高斯过程的方法,用于估计FHR记录中连续缺失的样本。该方法依赖于状态空间中的相似性,并利用吸引子流形的概念。所提出的方法在一段真实的FHR记录上进行了测试。实验结果表明,与几种常用于处理FHR信号的插值方法相比,所提出的方法能够提供更可靠的结果。

相似文献

1
Estimation of Consecutively Missed Samples in Fetal Heart Rate Recordings.胎儿心率记录中连续漏失样本的估计
Proc Eur Signal Process Conf EUSIPCO. 2020;2020:1080-1084. doi: 10.23919/eusipco47968.2020.9287490. Epub 2020 Dec 18.
2
Cardiotocography analysis by empirical dynamic modeling and Gaussian processes.基于经验动态建模和高斯过程的胎心监护分析
Front Bioeng Biotechnol. 2023 Jan 12;10:1057807. doi: 10.3389/fbioe.2022.1057807. eCollection 2022.
6
EXTRACTING INTERPRETABLE FEATURES FOR FETAL HEART RATE RECORDINGS WITH GAUSSIAN PROCESSES.利用高斯过程提取胎儿心率记录的可解释特征
Int Workshop Comput Adv Multisens Adapt Process. 2019 Dec;2019:381-385. doi: 10.1109/CAMSAP45676.2019.9022670. Epub 2020 Mar 5.

引用本文的文献

1
Fetal Heart Rate Preprocessing Techniques: A Scoping Review.胎儿心率预处理技术:一项范围综述
Bioengineering (Basel). 2024 Apr 11;11(4):368. doi: 10.3390/bioengineering11040368.
3
Cardiotocography analysis by empirical dynamic modeling and Gaussian processes.基于经验动态建模和高斯过程的胎心监护分析
Front Bioeng Biotechnol. 2023 Jan 12;10:1057807. doi: 10.3389/fbioe.2022.1057807. eCollection 2022.
5
Fetal heart rate development during labour.分娩过程中的胎儿心率变化
Biomed Eng Online. 2021 Mar 16;20(1):26. doi: 10.1186/s12938-021-00861-z.

本文引用的文献

2
Investigating pH based evaluation of fetal heart rate (FHR) recordings.基于pH值的胎儿心率(FHR)记录评估研究。
Health Technol (Berl). 2017;7(2):241-254. doi: 10.1007/s12553-017-0201-7. Epub 2017 Jul 4.
4
Open access intrapartum CTG database.开放获取的产时电子胎心监护数据库
BMC Pregnancy Childbirth. 2014 Jan 13;14:16. doi: 10.1186/1471-2393-14-16.
7
Causes and consequences of fetal acidosis.胎儿酸中毒的原因及后果。
Arch Dis Child Fetal Neonatal Ed. 1999 May;80(3):F246-9. doi: 10.1136/fn.80.3.f246.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验