School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA.
Department of Biology, O. Wayne Rollins Research Center, Emory University, Atlanta, GA 30322, USA.
G3 (Bethesda). 2021 Feb 9;11(2). doi: 10.1093/g3journal/jkab009.
The pigeon louse Columbicola columbae is a longstanding and important model for studies of ectoparasitism and host-parasite coevolution. However, a deeper understanding of its evolution and capacity for rapid adaptation is limited by a lack of genomic resources. Here, we present a high-quality draft assembly of the C. columbae genome, produced using a combination of Oxford Nanopore, Illumina, and Hi-C technologies. The final assembly is 208 Mb in length, with 12 chromosome-size scaffolds representing 98.1% of the assembly. For gene model prediction, we used a novel clustering method (wavy_choose) for Oxford Nanopore RNA-seq reads to feed into the MAKER annotation pipeline. High recovery of conserved single-copy orthologs (BUSCOs) suggests that our assembly and annotation are both highly complete and highly accurate. Consistent with the results of the only other assembled louse genome, Pediculus humanus, we find that C. columbae has a relatively low density of repetitive elements, the majority of which are DNA transposons. Also similar to P. humanus, we find a reduced number of genes encoding opsins, G protein-coupled receptors, odorant receptors, insulin signaling pathway components, and detoxification proteins in the C. columbae genome, relative to other insects. We propose that such losses might characterize the genomes of obligate, permanent ectoparasites with predictable habitats, limited foraging complexity, and simple dietary regimes. The sequencing and analysis for this genome were relatively low cost, and took advantage of a new clustering technique for Oxford Nanopore RNAseq reads that will be useful to future genome projects.
鸽子虱 Columbicola columbae 是寄生和宿主-寄生虫协同进化研究的长期而重要的模型。然而,由于缺乏基因组资源,对其进化和快速适应能力的深入了解受到限制。在这里,我们使用牛津纳米孔、Illumina 和 Hi-C 技术的组合,提供了 C. columbae 基因组的高质量草图组装。最终组装的长度为 208 Mb,有 12 个染色体大小的支架,代表了组装的 98.1%。为了进行基因模型预测,我们使用了一种新的聚类方法(wavy_choose)对牛津纳米孔 RNA-seq 读取进行聚类,然后将其输入 MAKER 注释管道。保守的单拷贝同源物(BUSCOs)的高回收率表明我们的组装和注释既高度完整又高度准确。与唯一组装的虱基因组 Pediculus humanus 的结果一致,我们发现 C. columbae 的重复元件密度相对较低,其中大多数是 DNA 转座子。与 P. humanus 相似,我们发现 C. columbae 基因组中编码视蛋白、G 蛋白偶联受体、气味受体、胰岛素信号通路成分和解毒蛋白的基因数量相对较少,而这些基因在其他昆虫中存在。我们提出,这种缺失可能是专性、永久性外寄生虫的基因组特征,这些寄生虫的栖息地可预测,觅食复杂性有限,饮食模式简单。这个基因组的测序和分析成本相对较低,并且利用了一种新的聚类技术,可用于未来的基因组项目。