Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, United States.
School of Forest Resources and Conservation, University of Florida, Gainesville, United States.
Elife. 2021 Feb 19;10:e62922. doi: 10.7554/eLife.62922.
Forests provide biodiversity, ecosystem, and economic services. Information on individual trees is important for understanding forest ecosystems but obtaining individual-level data at broad scales is challenging due to the costs and logistics of data collection. While advances in remote sensing techniques allow surveys of individual trees at unprecedented extents, there remain technical challenges in turning sensor data into tangible information. Using deep learning methods, we produced an open-source data set of individual-level crown estimates for 100 million trees at 37 sites across the United States surveyed by the National Ecological Observatory Network's Airborne Observation Platform. Each canopy tree crown is represented by a rectangular bounding box and includes information on the height, crown area, and spatial location of the tree. These data have the potential to drive significant expansion of individual-level research on trees by facilitating both regional analyses and cross-region comparisons encompassing forest types from most of the United States.
森林提供生物多样性、生态系统和经济服务。了解树木个体对于理解森林生态系统至关重要,但由于数据收集的成本和后勤问题,在广泛的尺度上获取个体层面的数据具有挑战性。虽然遥感技术的进步使得在前所未有的范围内对树木个体进行调查成为可能,但将传感器数据转化为有形信息仍然存在技术挑战。我们使用深度学习方法,为美国国家生态观测站网络的机载观测平台在美国 37 个地点调查的 1 亿棵树木生成了一个个体树冠估计的开源数据集。每个树冠树都由一个矩形边界框表示,并包含有关树的高度、树冠面积和空间位置的信息。这些数据有可能通过促进包括美国大部分地区的森林类型的区域分析和跨区域比较,极大地扩展树木的个体研究。