Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, United States of America.
Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida, United States of America.
PLoS Biol. 2024 Jul 16;22(7):e3002700. doi: 10.1371/journal.pbio.3002700. eCollection 2024 Jul.
The ecology of forest ecosystems depends on the composition of trees. Capturing fine-grained information on individual trees at broad scales provides a unique perspective on forest ecosystems, forest restoration, and responses to disturbance. Individual tree data at wide extents promises to increase the scale of forest analysis, biogeographic research, and ecosystem monitoring without losing details on individual species composition and abundance. Computer vision using deep neural networks can convert raw sensor data into predictions of individual canopy tree species through labeled data collected by field researchers. Using over 40,000 individual tree stems as training data, we create landscape-level species predictions for over 100 million individual trees across 24 sites in the National Ecological Observatory Network (NEON). Using hierarchical multi-temporal models fine-tuned for each geographic area, we produce open-source data available as 1 km2 shapefiles with individual tree species prediction, as well as crown location, crown area, and height of 81 canopy tree species. Site-specific models had an average performance of 79% accuracy covering an average of 6 species per site, ranging from 3 to 15 species per site. All predictions are openly archived and have been uploaded to Google Earth Engine to benefit the ecology community and overlay with other remote sensing assets. We outline the potential utility and limitations of these data in ecology and computer vision research, as well as strategies for improving predictions using targeted data sampling.
森林生态系统的生态学取决于树木的组成。在广泛的范围内捕捉到关于个体树木的细粒度信息,可以为森林生态系统、森林恢复以及对干扰的响应提供独特的视角。广泛范围内的个体树木数据有望增加森林分析、生物地理学研究和生态系统监测的规模,而不会丢失对个别物种组成和丰度的详细信息。使用深度神经网络的计算机视觉可以通过野外研究人员收集的标记数据,将原始传感器数据转换为单个树冠树种的预测。我们使用超过 40,000 个个体树木茎干作为训练数据,为全国生态观测网(NEON)的 24 个站点的超过 1 亿个个体树木创建了景观水平的物种预测。使用针对每个地理区域进行微调的分层多时相模型,我们生成了开源数据,以 1 公里 2 的形状文件形式提供,其中包含每个树种的预测,以及 81 个冠层树种的树冠位置、树冠面积和高度。特定于站点的模型的平均性能为 79%,平均每个站点覆盖 6 个物种,每个站点范围从 3 到 15 个物种。所有预测都被公开存档,并已上传到 Google Earth Engine,以造福生态学社区,并与其他遥感资产叠加。我们概述了这些数据在生态学和计算机视觉研究中的潜在用途和局限性,以及使用有针对性的数据采样来改进预测的策略。