Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
Methods Mol Biol. 2021;2243:249-269. doi: 10.1007/978-1-0716-1103-6_12.
Noninvasive prenatal diagnosis (NIPD) has become a common, safe, and effective procedure for detection of inherited diseases early in pregnancy. It is based on the analysis of fetal cell-free DNA (cffDNA) derived from the placenta, circulating in the maternal plasma. De novo mutations, although rare, cause a considerable number of dominant genetic disorders. Due to the sparse representation of fetal-derived sequences in the blood, the challenge of detecting low frequency fetal de novo mutations becomes preponderant. Hence, this detection type requires deep genome-wide sequencing of cffDNA from maternal plasma and a unique analysis approach. Here we suggest and discuss a method for identifying de novo mutations based on whole genome sequencing (WGS) of cell-free DNA (cfDNA) from maternal plasma samples. Our method consists of an augmented pipeline for analysis of de novo mutation candidates. It begins with an enhanced noninvasive fetal variant calling step, followed by a candidate de novo mutation filtration, and then finally, a supervised machine learning approach is utilized for reduction of false positive rates. Overall, this study provides a basis for genome-wide de novo mutation analysis in NIPD procedures, which could be used in any procedure where rare de novo mutations should be carefully picked out of a sea of data.
非侵入性产前诊断 (NIPD) 已成为一种常见、安全且有效的方法,可在妊娠早期检测遗传性疾病。它基于对源自胎盘、在母体血浆中循环的胎儿游离 DNA (cffDNA) 的分析。新生突变虽然罕见,但会导致相当数量的显性遗传疾病。由于血液中胎儿来源的序列代表性稀疏,检测低频胎儿新生突变的挑战变得尤为突出。因此,这种检测类型需要对母体血浆中的 cffDNA 进行深度全基因组测序和独特的分析方法。在这里,我们提出并讨论了一种基于母体血浆游离 DNA (cfDNA) 全基因组测序 (WGS) 识别新生突变的方法。我们的方法包括一个用于分析新生突变候选物的增强型管道。它从增强的非侵入性胎儿变异调用步骤开始,接着是候选新生突变过滤,最后是利用监督机器学习方法降低假阳性率。总的来说,这项研究为 NIPD 程序中的全基因组新生突变分析提供了基础,可用于任何需要从大量数据中仔细筛选罕见新生突变的程序。