Suppr超能文献

多功能可编程 DNA 纳米列车用于可激活缺氧成像和靶向线粒体增强光动力治疗。

Multifunctional Programmable DNA Nanotrain for Activatable Hypoxia Imaging and Mitochondrion-Targeted Enhanced Photodynamic Therapy.

机构信息

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Institute of Chemical Biology and Nanomedicine (ICBN), Hunan University, Changsha 410082, China.

National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Health Science Center, School of Biomedical Engineering, Shenzhen University, Shenzhen 518055, China.

出版信息

ACS Appl Mater Interfaces. 2021 Mar 3;13(8):9681-9690. doi: 10.1021/acsami.0c21681. Epub 2021 Feb 19.

Abstract

Programmable DNA-based nanostructures (, nanotrains, nanoflowers, and DNA dendrimers) provide new approaches for safe and effective biological imaging and tumor therapy. However, few studies have reported that DNA-based nanostructures respond to the hypoxic microenvironment for activatable imaging and organelle-targeted tumor therapy. Herein, we innovatively report an azoreductase-responsive, mitochondrion-targeted multifunctional programmable DNA nanotrain for activatable hypoxia imaging and enhanced efficacy of photodynamic therapy (PDT). Cyanine structural dye (Cy3) and black hole quencher 2 (BHQ2), which were employed as a fluorescent mitochondrion-targeted molecule and azoreductase-responsive element, respectively, covalently attached to the DNA hairpin monomers. The extended guanine (G)-rich sequence at the end of the DNA hairpin monomer served as a nanocarrier for the photosensitizer 5,10,15,20-tetrakis(4--methylpyridiniumyl) porphyrin (TMPyP4). Upon initiation between the DNA hairpin monomer and initiation probe, the fluorescence of Cy3 and the singlet oxygen (O) generation of TMPyP4 in the programmable nanotrain were effectively quenched by BHQ2 through the fluorescence resonance energy transfer (FRET) process. Once the programmable nanotrain entered cancer cells, the azo bond in BHQ2 will be reduced to amino groups by the high expression of azoreductase under hypoxia conditions; then, the fluorescence of Cy3 and the O generation of TMPyP4 will significantly be restored. Furthermore, due to the mitochondrion-targeting characteristic endowed by Cy3, the TMPyP4-loaded nanotrain would accumulate in the mitochondria of cancer cells and then demonstrate enhanced PDT efficacy under light irradiation. We expect that this programmable DNA nanotrain-based multifunctional nanoplatform could be effectively used for activatable imaging and high performance of PDT in hypoxia-related biomedical field.

摘要

基于可编程 DNA 的纳米结构(纳米列车、纳米花和 DNA 树状聚合物)为安全有效的生物成像和肿瘤治疗提供了新方法。然而,很少有研究报道基于 DNA 的纳米结构会对缺氧微环境产生反应,以进行可激活的成像和细胞器靶向肿瘤治疗。在此,我们创新性地报道了一种对还原酶响应的、靶向线粒体的多功能可编程 DNA 纳米列车,用于可激活的缺氧成像和增强光动力疗法(PDT)的疗效。吖嗪结构染料(Cy3)和黑洞猝灭剂 2(BHQ2)分别被用作荧光线粒体靶向分子和还原酶响应元件,共价连接到 DNA 发夹单体上。DNA 发夹单体末端的扩展鸟嘌呤(G)丰富序列作为光敏剂 5,10,15,20-四(4-甲氧基吡啶基)卟啉(TMPyP4)的纳米载体。在 DNA 发夹单体和起始探针之间开始反应后,Cy3 的荧光和 TMPyP4 的单线态氧(O)生成在可编程纳米列车中通过荧光共振能量转移(FRET)过程被 BHQ2 有效猝灭。一旦可编程纳米列车进入癌细胞,BHQ2 中的偶氮键将在缺氧条件下由还原酶的高表达还原为氨基;然后,Cy3 的荧光和 TMPyP4 的 O 生成将显著恢复。此外,由于 Cy3 赋予的靶向线粒体的特性,负载 TMPyP4 的纳米列车将在癌细胞的线粒体中积累,并在光照下表现出增强的 PDT 疗效。我们期望这种基于可编程 DNA 纳米列车的多功能纳米平台可有效用于与缺氧相关的生物医学领域中的可激活成像和高光动力疗法性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验