基于异构关系注意力网络的知识图谱嵌入学习

Learning Knowledge Graph Embedding With Heterogeneous Relation Attention Networks.

作者信息

Li Zhifei, Liu Hai, Zhang Zhaoli, Liu Tingting, Xiong Neal N

出版信息

IEEE Trans Neural Netw Learn Syst. 2022 Aug;33(8):3961-3973. doi: 10.1109/TNNLS.2021.3055147. Epub 2022 Aug 3.

Abstract

Knowledge graph (KG) embedding aims to study the embedding representation to retain the inherent structure of KGs. Graph neural networks (GNNs), as an effective graph representation technique, have shown impressive performance in learning graph embedding. However, KGs have an intrinsic property of heterogeneity, which contains various types of entities and relations. How to address complex graph data and aggregate multiple types of semantic information simultaneously is a critical issue. In this article, a novel heterogeneous GNNs framework based on attention mechanism is proposed. Specifically, the neighbor features of an entity are first aggregated under each relation-path. Then the importance of different relation-paths is learned through the relation features. Finally, each relation-path-based features with the learned weight values are aggregated to generate the embedding representation. Thus, the proposed method not only aggregates entity features from different semantic aspects but also allocates appropriate weights to them. This method can capture various types of semantic information and selectively aggregate informative features. The experiment results on three real-world KGs demonstrate superior performance when compared with several state-of-the-art methods.

摘要

知识图谱(KG)嵌入旨在研究嵌入表示以保留知识图谱的固有结构。图神经网络(GNN)作为一种有效的图表示技术,在学习图嵌入方面表现出了令人印象深刻的性能。然而,知识图谱具有异质性的内在属性,其中包含各种类型的实体和关系。如何处理复杂的图数据并同时聚合多种类型的语义信息是一个关键问题。在本文中,提出了一种基于注意力机制的新型异构图神经网络框架。具体而言,首先在每个关系路径下聚合实体的邻居特征。然后通过关系特征学习不同关系路径的重要性。最后,将基于每个关系路径的特征与学习到的权重值进行聚合,以生成嵌入表示。因此,所提出的方法不仅从不同语义方面聚合实体特征,还为它们分配适当的权重。该方法可以捕获各种类型的语义信息并选择性地聚合信息丰富的特征。在三个真实世界知识图谱上的实验结果表明,与几种现有方法相比,该方法具有卓越的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索