文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于改进 YOLOv5s 的安全头盔检测算法研究。

Research on Safety Helmet Detection Algorithm Based on Improved YOLOv5s.

机构信息

School of Artificial Intelligence, Wuchang University of Technology, Wuhan 430223, China.

School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430079, China.

出版信息

Sensors (Basel). 2023 Jun 22;23(13):5824. doi: 10.3390/s23135824.


DOI:10.3390/s23135824
PMID:37447673
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10346515/
Abstract

Safety helmets are essential in various indoor and outdoor workplaces, such as metallurgical high-temperature operations and high-rise building construction, to avoid injuries and ensure safety in production. However, manual supervision is costly and prone to lack of enforcement and interference from other human factors. Moreover, small target object detection frequently lacks precision. Improving safety helmets based on the helmet detection algorithm can address these issues and is a promising approach. In this study, we proposed a modified version of the YOLOv5s network, a lightweight deep learning-based object identification network model. The proposed model extends the YOLOv5s network model and enhances its performance by recalculating the prediction frames, utilizing the IoU metric for clustering, and modifying the anchor frames with the K-means++ method. The global attention mechanism (GAM) and the convolutional block attention module (CBAM) were added to the YOLOv5s network to improve its backbone and neck networks. By minimizing information feature loss and enhancing the representation of global interactions, these attention processes enhance deep learning neural networks' capacity for feature extraction. Furthermore, the CBAM is integrated into the CSP module to improve target feature extraction while minimizing computation for model operation. In order to significantly increase the efficiency and precision of the prediction box regression, the proposed model additionally makes use of the most recent SIoU (SCYLLA-IoU LOSS) as the bounding box loss function. Based on the improved YOLOv5s model, knowledge distillation technology is leveraged to realize the light weight of the network model, thereby reducing the computational workload of the model and improving the detection speed to meet the needs of real-time monitoring. The experimental results demonstrate that the proposed model outperforms the original YOLOv5s network model in terms of accuracy (Precision), recall rate (Recall), and mean average precision (mAP). The proposed model may more effectively identify helmet use in low-light situations and at a variety of distances.

摘要

安全帽在冶金高温作业、高层建筑施工等各种室内外工作场所都是必不可少的,它可以避免受伤,确保生产安全。然而,人工监督成本高,且容易出现执行不力和受到其他人为因素的干扰。此外,小目标物体检测通常缺乏精度。基于安全帽检测算法对安全帽进行改进,可以解决这些问题,是一种很有前途的方法。在这项研究中,我们提出了一种改进的 YOLOv5s 网络,这是一种基于深度学习的轻量级目标识别网络模型。所提出的模型扩展了 YOLOv5s 网络模型,通过重新计算预测框、使用 IoU 指标进行聚类以及使用 K-means++ 方法修改锚框来提高其性能。全局注意力机制(GAM)和卷积块注意力模块(CBAM)被添加到 YOLOv5s 网络中,以改进其骨干网络和颈部网络。通过最小化信息特征的损失并增强全局交互的表示,这些注意力过程增强了深度学习神经网络的特征提取能力。此外,CBAM 被集成到 CSP 模块中,以提高目标特征提取的同时最小化模型运算的计算量。为了显著提高预测框回归的效率和精度,所提出的模型还利用最新的 SIoU(SCYLLA-IoU LOSS)作为边界框损失函数。在所提出的改进 YOLOv5s 模型的基础上,利用知识蒸馏技术实现网络模型的轻量化,从而减少模型的计算工作量,提高检测速度,以满足实时监测的需求。实验结果表明,所提出的模型在精度(Precision)、召回率(Recall)和平均精度(mAP)方面均优于原始的 YOLOv5s 网络模型。所提出的模型可能更有效地识别低光照条件下和各种距离下的安全帽使用情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5fc/10346515/43f8ab11312a/sensors-23-05824-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5fc/10346515/28452d994393/sensors-23-05824-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5fc/10346515/ca2fc1797b7f/sensors-23-05824-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5fc/10346515/2829c8f64f25/sensors-23-05824-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5fc/10346515/d5d47d38c881/sensors-23-05824-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5fc/10346515/0276733746a6/sensors-23-05824-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5fc/10346515/4f824f672931/sensors-23-05824-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5fc/10346515/8a376238c339/sensors-23-05824-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5fc/10346515/cd86d051ccf8/sensors-23-05824-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5fc/10346515/5a9bba06b20b/sensors-23-05824-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5fc/10346515/41992e601ffe/sensors-23-05824-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5fc/10346515/45b8b9c89d41/sensors-23-05824-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5fc/10346515/a222cf1d5fdf/sensors-23-05824-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5fc/10346515/372a30bf5095/sensors-23-05824-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5fc/10346515/43f8ab11312a/sensors-23-05824-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5fc/10346515/28452d994393/sensors-23-05824-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5fc/10346515/ca2fc1797b7f/sensors-23-05824-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5fc/10346515/2829c8f64f25/sensors-23-05824-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5fc/10346515/d5d47d38c881/sensors-23-05824-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5fc/10346515/0276733746a6/sensors-23-05824-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5fc/10346515/4f824f672931/sensors-23-05824-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5fc/10346515/8a376238c339/sensors-23-05824-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5fc/10346515/cd86d051ccf8/sensors-23-05824-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5fc/10346515/5a9bba06b20b/sensors-23-05824-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5fc/10346515/41992e601ffe/sensors-23-05824-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5fc/10346515/45b8b9c89d41/sensors-23-05824-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5fc/10346515/a222cf1d5fdf/sensors-23-05824-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5fc/10346515/372a30bf5095/sensors-23-05824-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c5fc/10346515/43f8ab11312a/sensors-23-05824-g014.jpg

相似文献

[1]
Research on Safety Helmet Detection Algorithm Based on Improved YOLOv5s.

Sensors (Basel). 2023-6-22

[2]
Improvement of Lightweight Convolutional Neural Network Model Based on YOLO Algorithm and Its Research in Pavement Defect Detection.

Sensors (Basel). 2022-5-6

[3]
Helmet Wearing State Detection Based on Improved Yolov5s.

Sensors (Basel). 2022-12-14

[4]
Workshop Safety Helmet Wearing Detection Model Based on SCM-YOLO.

Sensors (Basel). 2022-9-5

[5]
Research on helmet wearing detection method based on deep learning.

Sci Rep. 2024-3-25

[6]
Helmet-Wearing Tracking Detection Based on StrongSORT.

Sensors (Basel). 2023-2-3

[7]
An improved UAV target detection algorithm based on ASFF-YOLOv5s.

Math Biosci Eng. 2023-4-18

[8]
Detection of safety helmet and mask wearing using improved YOLOv5s.

Sci Rep. 2023-12-5

[9]
A Pedestrian Detection Network Model Based on Improved YOLOv5.

Entropy (Basel). 2023-2-19

[10]
Road surface crack detection based on improved YOLOv5s.

Math Biosci Eng. 2024-2-26

引用本文的文献

[1]
Dress Code Monitoring Method in Industrial Scene Based on Improved YOLOv8n and DeepSORT.

Sensors (Basel). 2024-9-19

本文引用的文献

[1]
Defect Inspection Using Modified YoloV4 on a Stitched Image of a Spinning Tool.

Sensors (Basel). 2023-5-4

[2]
Detection and Classification of Cotton Foreign Fibers Based on Polarization Imaging and Improved YOLOv5.

Sensors (Basel). 2023-4-30

[3]
A lightweight YOLOv3 algorithm used for safety helmet detection.

Sci Rep. 2022-6-29

[4]
A Robust Fire Detection Model via Convolution Neural Networks for Intelligent Robot Vision Sensing.

Sensors (Basel). 2022-4-11

[5]
A Novel Hybrid Approach Based on Deep CNN Features to Detect Knee Osteoarthritis.

Sensors (Basel). 2021-9-15

[6]
Student Behavior Recognition System for the Classroom Environment Based on Skeleton Pose Estimation and Person Detection.

Sensors (Basel). 2021-8-6

[7]
Learning Knowledge Graph Embedding With Heterogeneous Relation Attention Networks.

IEEE Trans Neural Netw Learn Syst. 2022-8

[8]
Improved YOLO-V3 with DenseNet for Multi-Scale Remote Sensing Target Detection.

Sensors (Basel). 2020-7-31

[9]
Two-Step Real-Time Night-Time Fire Detection in an Urban Environment Using Static ELASTIC-YOLOv3 and Temporal Fire-Tube.

Sensors (Basel). 2020-4-13

[10]
Using Interpretative Structural Modeling to Identify Critical Success Factors for Safety Management in Subway Construction: A China Study.

Int J Environ Res Public Health. 2018-6-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索