School of Artificial Intelligence, Wuchang University of Technology, Wuhan 430223, China.
School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430079, China.
Sensors (Basel). 2023 Jun 22;23(13):5824. doi: 10.3390/s23135824.
Safety helmets are essential in various indoor and outdoor workplaces, such as metallurgical high-temperature operations and high-rise building construction, to avoid injuries and ensure safety in production. However, manual supervision is costly and prone to lack of enforcement and interference from other human factors. Moreover, small target object detection frequently lacks precision. Improving safety helmets based on the helmet detection algorithm can address these issues and is a promising approach. In this study, we proposed a modified version of the YOLOv5s network, a lightweight deep learning-based object identification network model. The proposed model extends the YOLOv5s network model and enhances its performance by recalculating the prediction frames, utilizing the IoU metric for clustering, and modifying the anchor frames with the K-means++ method. The global attention mechanism (GAM) and the convolutional block attention module (CBAM) were added to the YOLOv5s network to improve its backbone and neck networks. By minimizing information feature loss and enhancing the representation of global interactions, these attention processes enhance deep learning neural networks' capacity for feature extraction. Furthermore, the CBAM is integrated into the CSP module to improve target feature extraction while minimizing computation for model operation. In order to significantly increase the efficiency and precision of the prediction box regression, the proposed model additionally makes use of the most recent SIoU (SCYLLA-IoU LOSS) as the bounding box loss function. Based on the improved YOLOv5s model, knowledge distillation technology is leveraged to realize the light weight of the network model, thereby reducing the computational workload of the model and improving the detection speed to meet the needs of real-time monitoring. The experimental results demonstrate that the proposed model outperforms the original YOLOv5s network model in terms of accuracy (Precision), recall rate (Recall), and mean average precision (mAP). The proposed model may more effectively identify helmet use in low-light situations and at a variety of distances.
安全帽在冶金高温作业、高层建筑施工等各种室内外工作场所都是必不可少的,它可以避免受伤,确保生产安全。然而,人工监督成本高,且容易出现执行不力和受到其他人为因素的干扰。此外,小目标物体检测通常缺乏精度。基于安全帽检测算法对安全帽进行改进,可以解决这些问题,是一种很有前途的方法。在这项研究中,我们提出了一种改进的 YOLOv5s 网络,这是一种基于深度学习的轻量级目标识别网络模型。所提出的模型扩展了 YOLOv5s 网络模型,通过重新计算预测框、使用 IoU 指标进行聚类以及使用 K-means++ 方法修改锚框来提高其性能。全局注意力机制(GAM)和卷积块注意力模块(CBAM)被添加到 YOLOv5s 网络中,以改进其骨干网络和颈部网络。通过最小化信息特征的损失并增强全局交互的表示,这些注意力过程增强了深度学习神经网络的特征提取能力。此外,CBAM 被集成到 CSP 模块中,以提高目标特征提取的同时最小化模型运算的计算量。为了显著提高预测框回归的效率和精度,所提出的模型还利用最新的 SIoU(SCYLLA-IoU LOSS)作为边界框损失函数。在所提出的改进 YOLOv5s 模型的基础上,利用知识蒸馏技术实现网络模型的轻量化,从而减少模型的计算工作量,提高检测速度,以满足实时监测的需求。实验结果表明,所提出的模型在精度(Precision)、召回率(Recall)和平均精度(mAP)方面均优于原始的 YOLOv5s 网络模型。所提出的模型可能更有效地识别低光照条件下和各种距离下的安全帽使用情况。
Sensors (Basel). 2023-6-22
Sensors (Basel). 2022-12-14
Sensors (Basel). 2022-9-5
Sci Rep. 2024-3-25
Sensors (Basel). 2023-2-3
Math Biosci Eng. 2023-4-18
Sci Rep. 2023-12-5
Entropy (Basel). 2023-2-19
Math Biosci Eng. 2024-2-26
Sensors (Basel). 2024-9-19
Sensors (Basel). 2023-5-4
Sensors (Basel). 2023-4-30
Sci Rep. 2022-6-29
Sensors (Basel). 2022-4-11
Sensors (Basel). 2021-9-15
IEEE Trans Neural Netw Learn Syst. 2022-8
Sensors (Basel). 2020-7-31
Int J Environ Res Public Health. 2018-6-28