Suppr超能文献

用于同时预测与阿尔茨海默病相关的多个相关性状的自动分支多任务学习

Auto-branch multi-task learning for simultaneous prediction of multiple correlated traits associated with Alzheimer's disease.

作者信息

Liang Jiaqi, Xue Zhao, Zhou Wenchao, Guo Xiangjie, Wen Yalu

机构信息

Academy of Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China.

Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China.

出版信息

Front Genet. 2025 Jun 10;16:1538544. doi: 10.3389/fgene.2025.1538544. eCollection 2025.

Abstract

INTRODUCTION

Correlated phenotypes may have both shared and unique causal factors, and jointly modeling these phenotypes can enhance prediction performance by enabling efficient information transfer.

METHODS

We propose an auto-branch multi-task learning model within a deep learning framework for the simultaneous prediction of multiple correlated phenotypes. This model dynamically branches from a hard parameter sharing structure to prevent negative information transfer, ensuring that parameter sharing among phenotypes is beneficial.

RESULTS

Through simulation studies and analysis of seven Alzheimer's disease-related phenotypes, our method consistently outperformed Multi-Lasso model, single-task learning approaches, and commonly used hard parameter sharing models with predefine shared layers. These analyses also reveal that while genetic contributions across phenotypes are similar, the relative influence of each genetic factor varies substantially among phenotypes.

摘要

引言

相关的表型可能具有共同的和独特的因果因素,对这些表型进行联合建模可以通过实现有效的信息传递来提高预测性能。

方法

我们在深度学习框架内提出了一种自动分支多任务学习模型,用于同时预测多个相关表型。该模型从硬参数共享结构动态分支,以防止负面信息传递,确保表型之间的参数共享是有益的。

结果

通过模拟研究和对七种与阿尔茨海默病相关的表型的分析,我们的方法始终优于多套索模型、单任务学习方法以及具有预定义共享层的常用硬参数共享模型。这些分析还表明,虽然各表型间的遗传贡献相似,但每个遗传因素在各表型间的相对影响差异很大。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e094/12185508/067f07597a59/fgene-16-1538544-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验