Suppr超能文献

利用集成嵌套拉普拉斯逼近法在罕见变异关联研究中高效灵活地整合变异特征。

Efficient and flexible Integration of variant characteristics in rare variant association studies using integrated nested Laplace approximation.

机构信息

Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.

Division of Computational Genomics and Systems Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.

出版信息

PLoS Comput Biol. 2021 Feb 19;17(2):e1007784. doi: 10.1371/journal.pcbi.1007784. eCollection 2021 Feb.

Abstract

Rare variants are thought to play an important role in the etiology of complex diseases and may explain a significant fraction of the missing heritability in genetic disease studies. Next-generation sequencing facilitates the association of rare variants in coding or regulatory regions with complex diseases in large cohorts at genome-wide scale. However, rare variant association studies (RVAS) still lack power when cohorts are small to medium-sized and if genetic variation explains a small fraction of phenotypic variance. Here we present a novel Bayesian rare variant Association Test using Integrated Nested Laplace Approximation (BATI). Unlike existing RVAS tests, BATI allows integration of individual or variant-specific features as covariates, while efficiently performing inference based on full model estimation. We demonstrate that BATI outperforms established RVAS methods on realistic, semi-synthetic whole-exome sequencing cohorts, especially when using meaningful biological context, such as functional annotation. We show that BATI achieves power above 70% in scenarios in which competing tests fail to identify risk genes, e.g. when risk variants in sum explain less than 0.5% of phenotypic variance. We have integrated BATI, together with five existing RVAS tests in the 'Rare Variant Genome Wide Association Study' (rvGWAS) framework for data analyzed by whole-exome or whole genome sequencing. rvGWAS supports rare variant association for genes or any other biological unit such as promoters, while allowing the analysis of essential functionalities like quality control or filtering. Applying rvGWAS to a Chronic Lymphocytic Leukemia study we identified eight candidate predisposition genes, including EHMT2 and COPS7A.

摘要

稀有变异被认为在复杂疾病的病因学中起着重要作用,并且可能解释了遗传疾病研究中大量遗传缺失的一部分。下一代测序技术使得在全基因组范围内的大队列中,将编码或调控区域的稀有变异与复杂疾病联系起来成为可能。然而,当队列规模较小或中等,并且遗传变异仅能解释表型方差的一小部分时,稀有变异关联研究(RVAS)仍然缺乏效力。在这里,我们提出了一种新的贝叶斯稀有变异关联测试方法,使用集成嵌套拉普拉斯逼近(BATI)。与现有的 RVAS 测试不同,BATI 允许将个体或变体特异性特征作为协变量进行整合,同时基于完整模型估计有效地进行推断。我们证明 BATI 在现实的半合成全外显子测序队列上优于现有的 RVAS 方法,特别是在使用有意义的生物学背景(例如功能注释)时。我们表明,BATI 在竞争测试未能识别风险基因的情况下,例如当风险变异总和解释的表型方差小于 0.5%时,其功效超过 70%。我们已经将 BATI 与现有的五种 RVAS 测试集成到“稀有变异全基因组关联研究”(rvGWAS)框架中,用于全外显子或全基因组测序数据的分析。rvGWAS 支持基因或任何其他生物学单元(如启动子)的稀有变异关联,同时允许对质量控制或过滤等基本功能进行分析。将 rvGWAS 应用于慢性淋巴细胞白血病研究,我们确定了八个候选易感性基因,包括 EHMT2 和 COPS7A。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/777e/7928502/7c158061645e/pcbi.1007784.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验