Department of Bioengineering.
Department of Mechanical Engineering and Mechanics.
Biophys J. 2021 Mar 16;120(6):1011-1019. doi: 10.1016/j.bpj.2021.02.007. Epub 2021 Feb 17.
The current COVID-19 pandemic has led to a devastating impact across the world. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (the virus causing COVID-19) is known to use the receptor-binding domain (RBD) at viral surface spike (S) protein to interact with the angiotensin-converting enzyme 2 (ACE2) receptor expressed on many human cell types. The RBD-ACE2 interaction is a crucial step to mediate the host cell entry of SARS-CoV-2. Recent studies indicate that the ACE2 interaction with the SARS-CoV-2 S protein has a higher affinity than its binding with the structurally identical S protein of SARS-CoV-1, the virus causing the 2002-2004 SARS outbreak. However, the biophysical mechanism behind such binding affinity difference is unclear. This study utilizes combined single-molecule force spectroscopy and steered molecular dynamics (SMD) simulation approaches to quantify the specific interactions between SARS-CoV-2 or SARS-CoV-1 RBD and ACE2. Depending on the loading rates, the unbinding forces between SARS-CoV-2 RBD and ACE2 range from 70 to 105 pN and are 30-40% higher than those of SARS-CoV-1 RBD and ACE2 under similar loading rates. SMD results indicate that SARS-CoV-2 RBD interacts with the N-linked glycan on Asn90 of ACE2. This interaction is mostly absent in the SARS-CoV-1 RBD-ACE2 complex. During the SMD simulations, the extra RBD-N-glycan interaction contributes to a greater force and prolonged interaction lifetime. The observation is confirmed by our experimental force spectroscopy study. After removing N-linked glycans on ACE2, its mechanical binding strength with SARS-CoV-2 RBD decreases to a similar level of the SARS-CoV-1 RBD-ACE2 interaction. Together, the study uncovers the mechanism behind the difference in ACE2 binding between SARS-CoV-2 and SARS-CoV-1 and could help develop new strategies to block SARS-CoV-2 entry.
当前的 COVID-19 大流行对全球造成了毁灭性的影响。严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)(引起 COVID-19 的病毒)已知利用病毒表面刺突(S)蛋白上的受体结合结构域(RBD)与许多人类细胞类型上表达的血管紧张素转换酶 2(ACE2)受体相互作用。RBD-ACE2 相互作用是介导 SARS-CoV-2 进入宿主细胞的关键步骤。最近的研究表明,ACE2 与 SARS-CoV-2 S 蛋白的相互作用亲和力高于其与 SARS-CoV-1 结构相同的 S 蛋白的结合,SARS-CoV-1 是引起 2002-2004 年 SARS 爆发的病毒。然而,这种结合亲和力差异背后的生物物理机制尚不清楚。本研究利用单分子力谱学和定向分子动力学(SMD)模拟方法来定量 SARS-CoV-2 或 SARS-CoV-1 RBD 与 ACE2 之间的特定相互作用。根据加载速率的不同,SARS-CoV-2 RBD 与 ACE2 之间的解结合力范围为 70-105 pN,在相似的加载速率下,比 SARS-CoV-1 RBD 与 ACE2 的解结合力高 30-40%。SMD 结果表明,SARS-CoV-2 RBD 与 ACE2 上的 N-连接聚糖相互作用。这种相互作用在 SARS-CoV-1 RBD-ACE2 复合物中基本不存在。在 SMD 模拟过程中,额外的 RBD-N-聚糖相互作用导致更大的力和更长的相互作用寿命。我们的实验力谱学研究证实了这一观察结果。在 ACE2 上去除 N-连接聚糖后,其与 SARS-CoV-2 RBD 的机械结合强度降低到与 SARS-CoV-1 RBD-ACE2 相互作用相似的水平。总之,该研究揭示了 SARS-CoV-2 和 SARS-CoV-1 与 ACE2 结合差异的背后机制,并有助于开发阻断 SARS-CoV-2 进入的新策略。