Suppr超能文献

通过综合分析对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)传染性进行准确预测。

Accurate predictions of SARS-CoV-2 infectivity from comprehensive analysis.

作者信息

Park Jongkeun, Choi WonJong, Seong Do Young, Jeong Seungpil, Lee Ju Young, Park Hyo Jeong, Chung Dae Sun, Yi Kijong, Kim Uijin, Yoon Ga-Yeon, Kim Hyeran, Kim Taehoon, Ko Sooyeon, Min Eun Jeong, Cho Hyun-Soo, Cho Nam-Hyuk, Hong Dongwan

机构信息

Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.

Graduate School of Medical Science and Engineering, Korea Advanced Institute and Technology, Daejeon, Republic of Korea.

出版信息

Elife. 2024 Dec 24;13:RP99833. doi: 10.7554/eLife.99833.

Abstract

An unprecedented amount of SARS-CoV-2 data has been accumulated compared with previous infectious diseases, enabling insights into its evolutionary process and more thorough analyses. This study investigates SARS-CoV-2 features as it evolved to evaluate its infectivity. We examined viral sequences and identified the polarity of amino acids in the receptor binding motif (RBM) region. We detected an increased frequency of amino acid substitutions to lysine (K) and arginine (R) in variants of concern (VOCs). As the virus evolved to Omicron, commonly occurring mutations became fixed components of the new viral sequence. Furthermore, at specific positions of VOCs, only one type of amino acid substitution and a notable absence of mutations at D467 were detected. We found that the binding affinity of SARS-CoV-2 lineages to the ACE2 receptor was impacted by amino acid substitutions. Based on our discoveries, we developed APESS, an evaluation model evaluating infectivity from biochemical and mutational properties. In silico evaluation using real-world sequences and in vitro viral entry assays validated the accuracy of APESS and our discoveries. Using Machine Learning, we predicted mutations that had the potential to become more prominent. We created AIVE, a web-based system, accessible at https://ai-ve.org to provide infectivity measurements of mutations entered by users. Ultimately, we established a clear link between specific viral properties and increased infectivity, enhancing our understanding of SARS-CoV-2 and enabling more accurate predictions of the virus.

摘要

与以往的传染病相比,已经积累了前所未有的大量新冠病毒数据,这使得人们能够深入了解其进化过程并进行更全面的分析。本研究调查了新冠病毒在进化过程中的特征,以评估其传染性。我们检查了病毒序列,并确定了受体结合基序(RBM)区域中氨基酸的极性。我们在关注的变异株(VOC)中检测到氨基酸向赖氨酸(K)和精氨酸(R)取代的频率增加。随着病毒进化到奥密克戎毒株,常见的突变成为新病毒序列的固定组成部分。此外,在VOC的特定位置,仅检测到一种类型的氨基酸取代,并且在D467处明显没有突变。我们发现新冠病毒谱系与ACE2受体的结合亲和力受到氨基酸取代的影响。基于我们的发现,我们开发了APESS,这是一种从生化和突变特性评估传染性的评估模型。使用真实世界序列的计算机模拟评估和体外病毒进入试验验证了APESS和我们发现的准确性。我们使用机器学习预测了可能变得更加突出的突变。我们创建了AIVE,这是一个基于网络的系统,可在https://ai-ve.org访问,以提供用户输入突变的传染性测量结果。最终,我们在特定病毒特性与传染性增加之间建立了明确的联系,加深了我们对新冠病毒的理解,并能够对该病毒进行更准确的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd85/11668528/83a583d160dc/elife-99833-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验