Haba Makiko K, Lai Yi-Jen, Wotzlaw Jörn-Frederik, Yamaguchi Akira, Lugaro Maria, Schönbächler Maria
Institute of Geochemistry and Petrology, ETH Zürich, 8092 Zürich, Switzerland;
Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo 152-8551, Japan.
Proc Natl Acad Sci U S A. 2021 Feb 23;118(8). doi: 10.1073/pnas.2017750118.
The niobium-92-zirconium-92 (Nb-Zr) decay system with a half-life of 37 Ma has great potential to date the evolution of planetary materials in the early Solar System. Moreover, the initial abundance of the -process isotope Nb in the Solar System is important for quantifying the contribution of -process nucleosynthesis in astrophysical models. Current estimates of the initial Nb/Nb ratios have large uncertainties compromising the use of the Nb-Zr cosmochronometer and leaving nucleosynthetic models poorly constrained. Here, the initial Nb abundance is determined to high precision by combining the Nb-Zr systematics of cogenetic rutiles and zircons from mesosiderites with U-Pb dating of the same zircons. The mineral pair indicates that the Nb/Nb ratio of the Solar System started with (1.66 ± 0.10) × 10, and their Zr/Zr ratios can be explained by a three-stage Nb-Zr evolution on the mesosiderite parent body. Because of the improvement by a factor of 6 of the precision of the initial Solar System Nb/Nb, we can show that the presence of Nb in the early Solar System provides further evidence that both type Ia supernovae and core-collapse supernovae contributed to the light -process nuclei.
半衰期为3700万年的铌 - 92 - 锆 - 92(Nb - Zr)衰变系统在测定早期太阳系行星物质的演化方面具有巨大潜力。此外,太阳系中重元素过程同位素铌的初始丰度对于量化天体物理模型中重元素过程核合成的贡献至关重要。目前对初始铌/铌比值的估计存在很大不确定性,这影响了铌 - 锆宇宙计时器的使用,并使核合成模型的约束条件很差。在此,通过将中铁陨石中共生金红石和锆石的铌 - 锆系统学与相同锆石的铀 - 铅定年相结合,高精度地确定了初始铌丰度。矿物对表明,太阳系的铌/铌比值起始于(1.66 ± 0.10)× 10,其锆/锆比值可以通过中铁陨石母体上的三阶段铌 - 锆演化来解释。由于初始太阳系铌/铌精度提高了6倍,我们可以表明早期太阳系中铌的存在进一步证明了Ia型超新星和核心坍缩超新星都对轻元素过程核素有贡献。