Université de Paris, Institut de Physique du Globe de Paris, CNRS, F-75005 Paris, France.
CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
Proc Natl Acad Sci U S A. 2022 Mar 22;119(12):e2120933119. doi: 10.1073/pnas.2120933119. Epub 2022 Mar 15.
The formation and differentiation of planetary bodies are dated using radioactive decay systems, including the short-lived 146Sm-142Nd (T½ = 103 or 68 Ma) and long-lived 147Sm-143Nd (T½ = 106 Ga) radiogenic pairs that provide relative and absolute ages, respectively. However, the initial abundance and half-life of the extinct radioactive isotope 146Sm are still debated, weakening the interpretation of 146Sm-142Nd systematics obtained for early planetary processes. Here, we apply the short-lived 26Al-26Mg, 146Sm-142Nd, and long-lived 147Sm-143Sm chronometers to the oldest known andesitic meteorite, Erg Chech 002 (EC 002), to constrain the Solar System initial abundance of 146Sm. The 26Al-26Mg mineral isochron of EC 002 provides a tightly constrained initial δ26Mg* of −0.009 ± 0.005 ‰ and (26Al/27Al)0 of (8.89 ± 0.09) × 10−6. This initial abundance of 26Al is the highest measured so far in an achondrite and corresponds to a crystallization age of 1.80 ± 0.01 Myr after Solar System formation. The 146Sm-142Nd mineral isochron returns an initial 146Sm/144Sm ratio of 0.00830 ± 0.00032. By combining the Al-Mg crystallization age and initial 146Sm/144Sm ratio of EC 002 with values for refractory inclusions, achondrites, and lunar samples, the best-fit half-life for 146Sm is 102 ± 9 Ma, corresponding to the physically measured value of 103 ± 5 Myr, rather than the latest and lower revised value of 68 ± 7 Ma. Using a half-life of 103 Ma for 146Sm, the 146Sm/144Sm abundance of EC 002 translates into an initial Solar System 146Sm/144Sm ratio of 0.00840 ± 0.00032, which represents the most reliable and precise estimate to date and makes EC 002 an ideal anchor for the 146Sm-142Nd clock.
行星体的形成和分化是通过放射性衰变系统来测定的,包括短寿命的 146Sm-142Nd(T½=103 或 68 Ma)和长寿命的 147Sm-143Nd(T½=106 Ga)放射性对,它们分别提供相对和绝对年龄。然而,灭绝放射性同位素 146Sm 的初始丰度和半衰期仍存在争议,这削弱了对早期行星过程中获得的 146Sm-142Nd 系统的解释。在这里,我们将短寿命的 26Al-26Mg、146Sm-142Nd 和长寿命的 147Sm-143Sm 计时仪应用于最古老的已知安山质陨石——Erg Chech 002(EC 002),以限制太阳系中 146Sm 的初始丰度。EC 002 的 26Al-26Mg 矿物等时线提供了一个紧密约束的初始 δ26Mg*为-0.009±0.005‰和(26Al/27Al)0为(8.89±0.09)×10-6。这一 26Al 的初始丰度是迄今为止在无球粒陨石中测量到的最高值,对应于太阳系形成后 1.80±0.01 百万年的结晶年龄。146Sm-142Nd 矿物等时线返回的初始 146Sm/144Sm 比值为 0.00830±0.00032。通过将 EC 002 的 Al-Mg 结晶年龄和初始 146Sm/144Sm 比值与难熔包裹体、无球粒陨石和月球样本的值相结合,146Sm 的最佳半衰期为 102±9 Ma,对应于物理测量值 103±5 Myr,而不是最新和较低的修订值 68±7 Ma。使用 146Sm 的半衰期为 103 Ma,EC 002 的 146Sm/144Sm 丰度转化为初始太阳系 146Sm/144Sm 比值为 0.00840±0.00032,这是迄今为止最可靠和精确的估计值,使 EC 002 成为 146Sm-142Nd 时钟的理想基准。