Suppr超能文献

冷温带森林树种细根中缩合单宁的解剖结构模式。

Anatomical patterns of condensed tannin in fine roots of tree species from a cool-temperate forest.

机构信息

School of Human Science and Environment, University of Hyogo, Himeji, Hyogo, Japan.

Faculty of Science, Shinshu University, Matsumoto, Nagano, Japan.

出版信息

Ann Bot. 2021 Jul 28;128(1):59-71. doi: 10.1093/aob/mcab022.

Abstract

BACKGROUND AND AIMS

Condensed tannin (CT) is an important compound in plant biological structural defence and for tolerance of herbivory and environmental stress. However, little is known of the role and location of CT within the fine roots of woody plants. To understand the role of CT in fine roots across diverse species of woody dicot, we evaluated the localization of CT that accumulated in root tissue, and examined its relationships with the stele and cortex tissue in cross-sections of roots in 20 tree species forming different microbial symbiotic groups (ectomycorrhiza and arbuscular mycorrhiza).

METHODS

In a cool-temperate forest in Japan, cross-sections of sampled roots in different branching order classes, namely, first order, second to third order, fourth order, and higher than fourth order (higher order), were measured in terms of the length-based ratios of stele diameter and cortex thickness to root diameter. All root samples were then stained with ρ-dimethylaminocinnamaldehyde solution and we determined the ratio of localized CT accumulation area to the root cross-section area (CT ratio).

KEY RESULTS

Stele ratio tended to increase with increasing root order, whereas cortex ratio either remained unchanged or decreased with increasing order in all species. The CT ratio was significantly positively correlated to the stele ratio and negatively correlated to the cortex ratio in second- to fourth-order roots across species during the shift from primary to secondary root growth. Ectomycorrhiza-associated species mostly had a higher stele ratio and lower cortex ratio than arbuscular mycorrhiza-associated species across root orders. Compared with arbuscular mycorrhiza species, there was greater accumulation of CT in response to changes in the root order of ectomycorrhiza species.

CONCLUSIONS

Different development patterns of the stele, cortex and CT accumulation along the transition from root tip to secondary roots could be distinguished between different mycorrhizal associations. The CT in tissues in different mycorrhizal associations could help with root protection in specific branching orders during shifts in stele and cortex development before and during cork layer formation.

摘要

背景与目的

缩合单宁(CT)是植物生物结构防御和耐受草食和环境胁迫的重要化合物。然而,对于 CT 在木本植物细根中的作用和位置知之甚少。为了了解 CT 在不同木本双子叶植物细根中的作用,我们评估了在根组织中积累的 CT 的定位,并在 20 种形成不同微生物共生群(外生菌根和丛枝菌根)的树种的根横切面上检查了其与中柱和皮层组织的关系。

方法

在日本的一个凉爽温带森林中,按第一级、第二至第三级、第四级和高于第四级(高级)的不同分支顺序类别的采样根的横截面积进行测量,即中柱直径和皮层厚度与根直径的长度比。然后,所有根样本均用 ρ-二甲氨基肉桂醛溶液染色,我们确定了局部 CT 积累面积与根横截面面积的比值(CT 比)。

主要结果

中柱比随着根序的增加而增加,而在所有物种中,皮层比要么保持不变,要么随着根序的增加而减少。在从一级根向二级根生长转变过程中,二级至四级根的 CT 比与中柱比呈显著正相关,与皮层比呈显著负相关。在所有根序中,外生菌根相关物种的中柱比高于丛枝菌根相关物种,皮层比低于丛枝菌根相关物种。与丛枝菌根物种相比,外生菌根物种对根序变化的 CT 积累更大。

结论

不同的中柱、皮层和 CT 积累的发育模式可以在从根尖到二级根的转变过程中区分不同的菌根关联。在形成软木层之前和期间,在中柱和皮层发育的转变过程中,不同菌根关联中的组织 CT 可能有助于特定分支顺序的根保护。

相似文献

4
Characterizing fine-root traits by species phylogeny and microbial symbiosis in 11 co-existing woody species.
Oecologia. 2019 Dec;191(4):983-993. doi: 10.1007/s00442-019-04546-2. Epub 2019 Nov 2.
5
Linking root traits to nutrient foraging in arbuscular mycorrhizal trees in a temperate forest.
New Phytol. 2015 Oct;208(1):114-24. doi: 10.1111/nph.13451. Epub 2015 May 13.
7
Anatomical structures of fine roots of 91 vascular plant species from four groups in a temperate forest in Northeast China.
PLoS One. 2019 May 1;14(5):e0215126. doi: 10.1371/journal.pone.0215126. eCollection 2019.
9
Root diameter variations explained by anatomy and phylogeny of 50 tropical and temperate tree species.
Tree Physiol. 2014 Apr;34(4):415-25. doi: 10.1093/treephys/tpu019. Epub 2014 Apr 2.
10
[Effects of elevated N availability on anatomy, morphology and mycorrhizal colonization of fine roots: A review.].
Ying Yong Sheng Tai Xue Bao. 2016 Apr 22;27(4):1294-1302. doi: 10.13287/j.1001-9332.201604.032.

本文引用的文献

1
Secondary metabolites in plant defence mechanisms.
New Phytol. 1994 Aug;127(4):617-633. doi: 10.1111/j.1469-8137.1994.tb02968.x.
2
Coevolution of roots and mycorrhizas of land plants.
New Phytol. 2002 May;154(2):275-304. doi: 10.1046/j.1469-8137.2002.00397.x.
3
Anatomical characteristics of roots of citrus rootstocks that vary in specific root length.
New Phytol. 1999 Feb;141(2):309-321. doi: 10.1046/j.1469-8137.1999.00342.x.
4
The fungal collaboration gradient dominates the root economics space in plants.
Sci Adv. 2020 Jul 1;6(27). doi: 10.1126/sciadv.aba3756. Print 2020 Jul.
5
Characterizing fine-root traits by species phylogeny and microbial symbiosis in 11 co-existing woody species.
Oecologia. 2019 Dec;191(4):983-993. doi: 10.1007/s00442-019-04546-2. Epub 2019 Nov 2.
6
Mechanical traits of fine roots as a function of topology and anatomy.
Ann Bot. 2018 Dec 31;122(7):1103-1116. doi: 10.1093/aob/mcy076.
7
The Root Transition Zone: A Hot Spot for Signal Crosstalk.
Trends Plant Sci. 2018 May;23(5):403-409. doi: 10.1016/j.tplants.2018.02.004. Epub 2018 Feb 27.
9
Root Branching Is a Leading Root Trait of the Plant Economics Spectrum in Temperate Trees.
Front Plant Sci. 2017 Mar 8;8:315. doi: 10.3389/fpls.2017.00315. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验