Suppr超能文献

非靶向代谢组学揭示柳树耐盐性的阴离子和器官特异性代谢反应。

Untargeted metabolomics reveals anion and organ-specific metabolic responses of salinity tolerance in willow.

作者信息

Sas Eszter, Frémont Adrien, Gonzalez Emmanuel, Sarrazin Mathieu, Barnabé Simon, Labrecque Michel, Brereton Nicholas James Beresford, Pitre Frédéric Emmanuel

机构信息

Institut de recherche en biologie végétale (IRBV), Département de sciences biologiques, Université de Montréal - 4101 Sherbrooke East, Montreal, Quebec, H1X 2B2, Canada.

Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, California, 94720, USA.

出版信息

Plant J. 2025 Apr;122(1):e70160. doi: 10.1111/tpj.70160.

Abstract

Willows can alleviate soil salinisation while generating sustainable feedstock for biorefinery, yet the metabolomic adaptations underlying their tolerance remain poorly understood. Salix miyabeana was treated with two environmentally abundant salts, NaCl and NaSO, in a 12-week pot trial. Willows tolerated salts across all treatments (up to 9.1 dS m soil EC), maintaining biomass while selectively partitioning ions, confining Na to roots and accumulating Cl and in the canopy and adapting to osmotic stress via reduced stomatal conductance. Untargeted metabolomics captured >5000 putative compounds, including 278 core willow metabolome compounds constitutively produced across organs. Across all treatments, salinity drove widespread metabolic reprogramming, altering 28% of the overall metabolome, with organ-tailored strategies. Comparing salt forms at equimolar sodium, shared differentially abundant metabolites were limited to 3% of the metabolome, representing the generalised salinity response, predominantly in roots. Anion-specific metabolomic responses were extensive. NaCl reduced carbohydrates and tricarboxylic acid cycle intermediates, suggesting potential carbon and energy resource pressure, and accumulated root structuring compounds, antioxidant flavonoids, and fatty acids. NaSO salinity triggered accumulation of sulphur-containing larger peptides, suggesting excess sulphate incorporation leverages ion toxicity to produce specialised salt-tolerance-associated metabolites. This high-depth picture of the willow metabolome underscores the importance of capturing plant adaptations to salt stress at organ scale and considering ion-specific contributions to soil salinity.

摘要

柳树可以缓解土壤盐渍化,同时为生物炼制提供可持续的原料,但其耐盐性背后的代谢组学适应性仍知之甚少。在一项为期12周的盆栽试验中,用两种环境中含量丰富的盐(氯化钠和硫酸钠)处理了宫城柳。柳树在所有处理中都能耐受盐分(土壤电导率高达9.1 dS m),保持生物量,同时选择性地分配离子,将钠限制在根部,在树冠中积累氯和其他物质,并通过降低气孔导度来适应渗透胁迫。非靶向代谢组学捕获了超过5000种假定化合物,包括278种在各器官中组成性产生的核心柳树代谢组化合物。在所有处理中,盐分驱动了广泛的代谢重编程,改变了28%的整体代谢组,采用了针对器官的策略。在等摩尔钠的情况下比较盐的形式,共同差异丰富的代谢物仅限于代谢组的3%,代表了主要在根部的普遍盐度反应。阴离子特异性代谢组学反应广泛。氯化钠减少了碳水化合物和三羧酸循环中间体,表明可能存在碳和能量资源压力,并积累了根系结构化合物、抗氧化黄酮类化合物和脂肪酸。硫酸钠盐度引发了含硫较大肽的积累,表明过量的硫酸盐掺入利用离子毒性产生了与耐盐性相关的特殊代谢物。柳树代谢组的这一深度图景强调了在器官尺度上捕捉植物对盐胁迫的适应性以及考虑离子对土壤盐度的特定贡献的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/14f1/12007397/53e05f66ab3e/TPJ-122-0-g006.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验