Suppr超能文献

基于计算学习的溃疡性结肠炎患者直肠结肠切除术后储袋炎结局预测的 microRNA 分析。

Computational Learning of microRNA-Based Prediction of Pouchitis Outcome After Restorative Proctocolectomy in Patients With Ulcerative Colitis.

机构信息

INSERM U1149, Université de Paris, Centre de Recherche sur l'inflammation, Team Gut Inflammation, Paris, France.

Laboratory of Excellence Labex INFLAMEX, Sorbonne Paris-Cité, Paris, France.

出版信息

Inflamm Bowel Dis. 2021 Oct 18;27(10):1653-1660. doi: 10.1093/ibd/izab030.

Abstract

BACKGROUND

Ileal pouch-anal anastomosis (IPAA) is the standard of care after total proctocolectomy for ulcerative colitis (UC). However, inflammation often develops in the pouch, leading to acute or recurrent/chronic pouchitis (R/CP). MicroRNAs (miRNA) are used as accurate diagnostic and predictive biomarkers in many human diseases, including inflammatory bowel diseases. Therefore, we aimed to identify an miRNA-based biomarker to predict the occurrence of R/CP in patients with UC after colectomy and IPAA.

METHODS

We conducted a retrospective study in 3 tertiary centers in France. We included patients with UC who had undergone IPAA with or without subsequent R/CP. Paraffin-embedded biopsies collected from the terminal ileum during the proctocolectomy procedure were used for microarray analysis of miRNA expression profiles. Deep neural network-based classifiers were used to identify biomarkers predicting R/CP using miRNA expression and relevant biological and clinical factors in a discovery cohort of 29 patients. The classification algorithm was tested in an independent validation cohort of 28 patients.

RESULTS

A combination of 11 miRNA expression profiles and 3 biological/clinical factors predicted the outcome of R/CP with 88% accuracy (area under the curve = 0.94) in the discovery cohort. The performance of the classification algorithm was confirmed in the validation cohort with 88% accuracy (area under the curve = 0.90). Apoptosis, cytoskeletal regulation by Rho GTPase, and fibroblast growth factor signaling were the most dysregulated targets of the 11 selected miRNAs.

CONCLUSIONS

We developed and validated a computational miRNA-based algorithm for accurately predicting R/CP in patients with UC after IPAA.

摘要

背景

回肠贮袋肛管吻合术(IPAA)是溃疡性结肠炎(UC)全结肠切除术后的标准治疗方法。然而,贮袋常发生炎症,导致急性或复发性/慢性贮袋炎(R/CP)。微小 RNA(miRNA)已被用作许多人类疾病(包括炎症性肠病)的准确诊断和预测生物标志物。因此,我们旨在确定一种基于 miRNA 的生物标志物,以预测接受结肠切除和 IPAA 术后 UC 患者 R/CP 的发生。

方法

我们在法国的 3 个三级中心进行了一项回顾性研究。我们纳入了接受 IPAA 治疗且有或无后续 R/CP 的 UC 患者。在结肠切除术中,从末端回肠采集石蜡包埋的活检标本,用于 miRNA 表达谱的微阵列分析。使用深度神经网络分类器,基于 miRNA 表达和相关生物学及临床因素,在 29 例患者的发现队列中识别预测 R/CP 的生物标志物。该分类算法在 28 例患者的独立验证队列中进行了测试。

结果

11 个 miRNA 表达谱和 3 个生物学/临床因素的组合在发现队列中对 R/CP 的结果进行预测的准确率为 88%(曲线下面积=0.94)。分类算法在验证队列中的性能得到了验证,准确率为 88%(曲线下面积=0.90)。凋亡、Rho GTPase 调节细胞骨架和成纤维细胞生长因子信号通路是 11 个选定 miRNA 最失调的靶标。

结论

我们开发并验证了一种计算 miRNA 为基础的算法,可准确预测接受 IPAA 治疗后的 UC 患者 R/CP 的发生。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验