Département d'Anesthésie-Réanimation, AP-HP, Hôpital Bichat Claude Bernard, Université Paris cité, Paris, France.
LVTS, Inserm U1148, Université Paris cité, 75018, Paris, France.
Sci Rep. 2022 Oct 21;12(1):17628. doi: 10.1038/s41598-022-21070-1.
We evaluated the contribution of artificial intelligence in predicting the risk of acute cellular rejection (ACR) using early plasma levels of soluble CD31 (sCD31) in combination with recipient haematosis, which was measured by the ratio of arterial oxygen partial pressure to fractional oxygen inspired (PaO/FiO) and respiratory SOFA (Sequential Organ Failure Assessment) within 3 days of lung transplantation (LTx). CD31 is expressed on endothelial cells, leukocytes and platelets and acts as a "peace-maker" at the blood/vessel interface. Upon nonspecific activation, CD31 can be cleaved, released, and detected in the plasma (sCD31). The study included 40 lung transplant recipients, seven (17.5%) of whom experienced ACR. We modelled the plasma levels of sCD31 as a nonlinear dependent variable of the PaO/FiO and respiratory SOFA over time using multivariate and multimodal models. A deep convolutional network classified the time series models of each individual associated with the risk of ACR to each individual in the cohort.
我们评估了使用人工神经网络(Artificial Intelligence,简称 AI),通过在肺移植(Lung Transplantation,简称 LTx)后 3 天内测量的动脉血氧分压与吸入氧分数比值(arterial oxygen partial pressure to fractional oxygen inspired,简称 PaO/FiO)和呼吸序贯器官衰竭评估(Sequential Organ Failure Assessment,简称 SOFA),联合受体血细胞比容,来预测急性细胞排斥(Acute Cellular Rejection,简称 ACR)风险中人工智能的作用。CD31 表达于内皮细胞、白细胞和血小板上,并在血管内皮界面充当“和平使者”。在非特异性激活后,CD31 可以被切割、释放,并在血浆中检测到(soluble CD31,简称 sCD31)。本研究纳入了 40 例肺移植受者,其中 7 例(17.5%)发生了 ACR。我们使用多元和多模态模型,将 sCD31 的血浆水平建模为随时间变化的 PaO/FiO 和呼吸 SOFA 的非线性因变量。深度卷积网络对每个个体与 ACR 风险相关的时间序列模型进行分类,然后将其与队列中的每个个体进行比较。