Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario 2000, Argentina.
Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (IBR-CONICET) and Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Ocampo y Esmeralda, Rosario 2000, Argentina; Plataforma Argentina de Biología Estructural y Metabolómica (PLABEM), Ocampo y Esmeralda, Rosario 2000, Argentina.
Sci Total Environ. 2021 Jun 20;774:145761. doi: 10.1016/j.scitotenv.2021.145761. Epub 2021 Feb 11.
Glyphosate is a synthetic phosphonate compound characterized by a carbon‑phosphorus bond. Glyphosate based herbicides (GBH) are widely distributed in most of the economically productive lands in which crop production is mainly based on glyphosate-resistant genetically modified plants. Naturally, glyphosate is remediated by soil microorganisms, which accelerate its degradation. Technology based on microorganisms is considered highly efficient, low-cost and eco-friendly to remediate contaminated environments, denoting the importance of characterizing new bacterial strains able to degrade glyphosate to perform its bioremediation. In this work, 13 different bacterial strains able to grow in GBH as only phosphorous source were isolated from different environmental samples from the Argentine vastly productive glyphosate-resistant soybean crop area. These strains were identified and they belong to the genera Acinetobacter, Achromobacter, Agrobacterium, Ochrobactrum, Pantoea and Pseudomonas. Their ability to grow and consume GBH, glyphosate or the aminomethylphosphonic acid (AMPA), another phosphonate derived from glyphosate degradation, was evaluated. The best degradation performance was observed for bacteria from the genera Achromobacter, Agrobacterium and Ochrobactrum. The genome of the highly efficient GBH degrader Agrobacterium tumefaciens CHLDO was sequenced revealing the presence of a phn cluster, responsible for phosphonate metabolization. Expression analysis of A. tumefaciens CHLDO phn genes in the presence of 1.5 mM GBH compared to inorganic phosphorous showed that most of them are highly expressed during growth in the presence of the herbicide, suggesting a strong participation of phn cluster in GBH degradation. The importance of discovering new bacterial strains and the value of deciphering molecular determinants of GBH degradation give promising tools for bioremediation techniques to be used in glyphosate-contaminated environments is discussed.
草甘膦是一种具有碳-磷键的合成膦酸化合物。草甘膦类除草剂(GBH)广泛分布于大多数经济生产力较高的土地上,这些土地的作物生产主要依赖于抗草甘膦的基因改良植物。天然存在的草甘膦可被土壤微生物修复,从而加速其降解。基于微生物的技术被认为是一种高效、低成本且对环境友好的方法,可用于修复受污染的环境,这表明了鉴定能够降解草甘膦以进行生物修复的新型细菌菌株的重要性。在这项工作中,从阿根廷广泛种植抗草甘膦大豆作物区的不同环境样本中分离到 13 株不同的细菌菌株,这些菌株能够以 GBH 作为唯一的磷源生长。这些菌株已被鉴定,它们属于不动杆菌属、无色杆菌属、根瘤菌属、食酸菌属、泛菌属和假单胞菌属。评估了它们生长和消耗 GBH、草甘膦或氨甲基膦酸(AMPA)的能力,AMPA 是草甘膦降解的另一种膦酸衍生物。从无色杆菌属、根瘤菌属和食酸菌属分离出的细菌表现出最佳的降解性能。高效的 GBH 降解菌根瘤农杆菌 CHLDO 的基因组测序揭示了一个 phn 簇的存在,该簇负责膦酸盐的代谢。与无机磷相比,在 1.5mM GBH 存在下,对根瘤农杆菌 CHLDO phn 基因的表达分析表明,在存在除草剂的情况下,大多数基因的表达水平较高,这表明 phn 簇在 GBH 降解中发挥了重要作用。讨论了发现新细菌菌株的重要性以及阐明草甘膦降解的分子决定因素的价值,为在受草甘膦污染的环境中使用生物修复技术提供了有前途的工具。