University of Michigan, Ann Arbor, USA.
New York University, New York, NY, USA.
J Neurooncol. 2021 Feb;151(3):393-402. doi: 10.1007/s11060-019-03380-z. Epub 2021 Feb 21.
INTRODUCTION: Label-free Raman-based imaging techniques create the possibility of bringing chemical and histologic data into the operation room. Relying on the intrinsic biochemical properties of tissues to generate image contrast and optical tissue sectioning, Raman-based imaging methods can be used to detect microscopic tumor infiltration and diagnose brain tumor subtypes. METHODS: Here, we review the application of three Raman-based imaging methods to neurosurgical oncology: Raman spectroscopy, coherent anti-Stokes Raman scattering (CARS) microscopy, and stimulated Raman histology (SRH). RESULTS: Raman spectroscopy allows for chemical characterization of tissue and can differentiate normal and tumor-infiltrated tissue based on variations in macromolecule content, both ex vivo and in vivo. To improve signal-to-noise ratio compared to conventional Raman spectroscopy, a second pulsed excitation laser can be used to coherently drive the vibrational frequency of specific Raman active chemical bonds (i.e. symmetric stretching of -CH bonds). Coherent Raman imaging, including CARS and stimulated Raman scattering microscopy, has been shown to detect microscopic brain tumor infiltration in fresh brain tumor specimens with submicron image resolution. Advances in fiber-laser technology have allowed for the development of intraoperative SRH as well as artificial intelligence algorithms to facilitate interpretation of SRH images. With molecular diagnostics becoming an essential part of brain tumor classification, preliminary studies have demonstrated that Raman-based methods can be used to diagnose glioma molecular classes intraoperatively. CONCLUSIONS: These results demonstrate how label-free Raman-based imaging methods can be used to improve the management of brain tumor patients by detecting tumor infiltration, guiding tumor biopsy/resection, and providing images for histopathologic and molecular diagnosis.
简介:基于无标记拉曼的成像技术为将化学和组织学数据引入手术室创造了可能。基于组织的固有生化特性生成图像对比和光学组织切片,基于拉曼的成像方法可用于检测微观肿瘤浸润并诊断脑肿瘤亚型。
方法:在这里,我们回顾了三种基于拉曼的成像方法在神经外科肿瘤学中的应用:拉曼光谱、相干反斯托克斯拉曼散射(CARS)显微镜和受激拉曼组织学(SRH)。
结果:拉曼光谱允许对组织进行化学表征,并且可以根据大分子含量的变化来区分正常组织和浸润组织,无论是在体外用还是在体内用。为了与传统拉曼光谱相比提高信噪比,可以使用第二个脉冲激发激光来相干地驱动特定拉曼活性化学键的振动频率(即-CH 键的对称拉伸)。相干拉曼成像,包括 CARS 和受激拉曼散射显微镜,已被证明可以在新鲜的脑肿瘤标本中以亚微米图像分辨率检测到微观脑肿瘤浸润。光纤激光技术的进步允许开发术中 SRH 以及人工智能算法来促进 SRH 图像的解释。随着分子诊断成为脑肿瘤分类的重要组成部分,初步研究表明,基于拉曼的方法可用于术中诊断神经胶质瘤的分子类型。
结论:这些结果表明,无标记基于拉曼的成像方法如何通过检测肿瘤浸润、指导肿瘤活检/切除以及提供用于组织病理学和分子诊断的图像来改善脑肿瘤患者的管理。
J Neurooncol. 2021-2
Neurosurg Focus. 2016-3
Tomography. 2024-5-9
Clin Neurol Neurosurg. 2015-4
Sci Transl Med. 2015-10-14
Tomography. 2024-5-9
Nat Commun. 2018-8-6
Clin Cancer Res. 2018-2-13
Clin Cancer Res. 2017-12-19
Oncotarget. 2017-7-28