文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于脑肿瘤研究的拉曼成像新策略。

Novel strategies of Raman imaging for brain tumor research.

作者信息

Anna Imiela, Bartosz Polis, Lech Polis, Halina Abramczyk

机构信息

Lodz University of Technology, Institute of Applied Radiation Chemistry, Laboratory of Laser Molecular Spectroscopy, 93-590 Lodz, Poland.

Polish Mother's Memorial Hospital Research Institute, Department of Neurosurgery and Neurotraumatology, 3-338 Lodz, Poland.

出版信息

Oncotarget. 2017 Jul 28;8(49):85290-85310. doi: 10.18632/oncotarget.19668. eCollection 2017 Oct 17.


DOI:10.18632/oncotarget.19668
PMID:29156720
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5689610/
Abstract

Raman diagnostics and imaging have been shown to be an effective tool for the analysis and discrimination of human brain tumors from normal structures. Raman spectroscopic methods have potential to be applied in clinical practice as they allow for identification of tumor margins during surgery. In this study, we investigate medulloblastoma (grade IV WHO) (n= 5), low-grade astrocytoma (grades I-II WHO) (n =4), ependymoma (n=3) and metastatic brain tumors (n= 1) and the tissue from the negative margins used as normal controls. We compare a high grade medulloblastoma, low grade astrocytoma and non-tumor samples from human central nervous system (CNS) tissue. Based on the properties of the Raman vibrational features and Raman images we provide a real-time feedback method that is label-free to monitor tumor metabolism that reveals reprogramming of biosynthesis of lipids, proteins, DNA and RNA. Our results indicate marked metabolic differences between low and high grade brain tumors. We discuss molecular mechanisms causing these metabolic changes, particularly lipid alterations in malignant medulloblastoma and low grade gliomas that may shed light on the mechanisms driving tumor recurrence thereby revealing new approaches for the treatment of malignant glioma. We have found that the high-grade tumors of central nervous system (medulloblastoma) exhibit enhanced level of β-sheet conformation and down-regulated level of α-helix conformation when comparing against normal tissue. We have found that almost all tumors studied in the paper have increased Raman signals of nucleic acids. This increase can be interpreted as increased DNA/RNA turnover in brain tumors. We have shown that the ratio of Raman intensities I/I at 2930 and 2845 cm is a good source of information on the ratio of lipid and protein contents. We have found that the ratio reflects the different lipid and protein contents of cancerous brain tissue compared to the non-tumor tissue. We found that levels of the saturated fatty acids were significantly reduced in the high grade medulloblastoma samples compared with non-tumor brain samples and low grade astrocytoma. Differences were also noted in the n-6/n-3 polyunsaturated fatty acids (PUFA) content between medulloblastoma and non-tumor brain samples. The content of the oleic acid (OA) was significantly smaller in almost all brain high grade brain tumors than that observed in the control samples. It indicates that the fatty acid composition of human brain tumors differs from that found in non-tumor brain tissue. The iodine number N for the normal brain tissue is 60. For comparison OA has 87, docosahexaenoic acid (DHA) 464, α-linolenic acid (ALA) 274. The high grade tumors have the iodine numbers between that for palmitic acid, stearic acid, arachidic acid (N=0) and oleic acid (N=87). Most low grade tumors have N similar to that of OA. The iodine number for arachidonic acid (AA) (N=334) is much higher than those observed for all studied samples.

摘要

拉曼诊断与成像已被证明是一种用于分析和区分人脑肿瘤与正常结构的有效工具。拉曼光谱方法有潜力应用于临床实践,因为它们能够在手术过程中识别肿瘤边缘。在本研究中,我们调查了髓母细胞瘤(世界卫生组织IV级)(n = 5)、低级别星形细胞瘤(世界卫生组织I-II级)(n = 4)、室管膜瘤(n = 3)和转移性脑肿瘤(n = 1),并将用作正常对照的阴性边缘组织也纳入其中。我们比较了来自人类中枢神经系统(CNS)组织的高级别髓母细胞瘤、低级别星形细胞瘤和非肿瘤样本。基于拉曼振动特征和拉曼图像的特性,我们提供了一种无需标记的实时反馈方法来监测肿瘤代谢,该方法揭示了脂质、蛋白质、DNA和RNA生物合成的重新编程。我们的结果表明低级别和高级别脑肿瘤之间存在显著的代谢差异。我们讨论了导致这些代谢变化的分子机制,特别是恶性髓母细胞瘤和低级别胶质瘤中的脂质改变,这可能有助于揭示驱动肿瘤复发的机制,从而为恶性胶质瘤的治疗揭示新方法。我们发现,与正常组织相比,中枢神经系统的高级别肿瘤(髓母细胞瘤)表现出β-折叠构象水平升高和α-螺旋构象水平下调。我们发现本文研究的几乎所有肿瘤的核酸拉曼信号都增加了。这种增加可以解释为脑肿瘤中DNA/RNA周转率的增加。我们已经表明,2930和2845 cm处的拉曼强度I/I之比是脂质和蛋白质含量之比的良好信息来源。我们发现该比值反映了癌性脑组织与非肿瘤组织中不同的脂质和蛋白质含量。我们发现,与非肿瘤脑样本和低级别星形细胞瘤相比,高级别髓母细胞瘤样本中的饱和脂肪酸水平显著降低。髓母细胞瘤和非肿瘤脑样本之间的n-6/n-3多不饱和脂肪酸(PUFA)含量也存在差异。几乎所有高级别脑肿瘤中的油酸(OA)含量均明显低于对照样本。这表明人脑肿瘤的脂肪酸组成与非肿瘤脑组织不同。正常脑组织的碘值N为60。相比之下,OA为87,二十二碳六烯酸(DHA)为464,α-亚麻酸(ALA)为274。高级别肿瘤的碘值介于棕榈酸、硬脂酸、花生酸(N = 0)和油酸(N = 87)之间。大多数低级别肿瘤的N与OA相似。花生四烯酸(AA)的碘值(N = 334)远高于所有研究样本的碘值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f55/5689610/6200eec51023/oncotarget-08-85290-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f55/5689610/2d62e0370024/oncotarget-08-85290-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f55/5689610/6a4311c30990/oncotarget-08-85290-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f55/5689610/fe260bba3eef/oncotarget-08-85290-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f55/5689610/1658bb5534ea/oncotarget-08-85290-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f55/5689610/e4d706aa996f/oncotarget-08-85290-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f55/5689610/2b5a39e0015c/oncotarget-08-85290-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f55/5689610/77e6d8b6d099/oncotarget-08-85290-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f55/5689610/b80f9bbf9d10/oncotarget-08-85290-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f55/5689610/78614ff50bee/oncotarget-08-85290-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f55/5689610/7482ec2b7576/oncotarget-08-85290-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f55/5689610/6200eec51023/oncotarget-08-85290-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f55/5689610/2d62e0370024/oncotarget-08-85290-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f55/5689610/6a4311c30990/oncotarget-08-85290-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f55/5689610/fe260bba3eef/oncotarget-08-85290-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f55/5689610/1658bb5534ea/oncotarget-08-85290-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f55/5689610/e4d706aa996f/oncotarget-08-85290-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f55/5689610/2b5a39e0015c/oncotarget-08-85290-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f55/5689610/77e6d8b6d099/oncotarget-08-85290-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f55/5689610/b80f9bbf9d10/oncotarget-08-85290-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f55/5689610/78614ff50bee/oncotarget-08-85290-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f55/5689610/7482ec2b7576/oncotarget-08-85290-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f55/5689610/6200eec51023/oncotarget-08-85290-g011.jpg

相似文献

[1]
Novel strategies of Raman imaging for brain tumor research.

Oncotarget. 2017-7-28

[2]
The biochemical, nanomechanical and chemometric signatures of brain cancer.

Spectrochim Acta A Mol Biomol Spectrosc. 2017-6-30

[3]
Identification of pediatric brain neoplasms using Raman spectroscopy.

Pediatr Neurosurg. 2012

[4]
Raman spectroscopy for medulloblastoma.

Childs Nerv Syst. 2018-12

[5]
18F-fluoro-L-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors.

J Nucl Med. 2005-12

[6]
Profiles of the fatty acids in the plasma membrane of human brain tumors.

Cancer Biochem Biophys. 1998-11

[7]
Comparative effects of high oleic acid vs high mixed saturated fatty acid obesogenic diets upon PUFA metabolism in mice.

Prostaglandins Leukot Essent Fatty Acids. 2017-4

[8]
Can Behenic Acid (C22:0) Levels be a Prognostic Factor in Glial Tumors?

Can J Neurol Sci. 2013-11

[9]
Overexpression and hyperactivity of breast cancer-associated fatty acid synthase (oncogenic antigen-519) is insensitive to normal arachidonic fatty acid-induced suppression in lipogenic tissues but it is selectively inhibited by tumoricidal alpha-linolenic and gamma-linolenic fatty acids: a novel mechanism by which dietary fat can alter mammary tumorigenesis.

Int J Oncol. 2004-6

[10]
Magnetic resonance spectroscopy detection of high lipid levels in intraaxial tumors without central necrosis: a characteristic of malignant lymphoma.

J Neurosurg. 2015-6

引用本文的文献

[1]
Modifications of Cytochrome by Retinoic Acid Play a Crucial Role in Mitochondrial Dysfunction of Triple-Positive Human Breast Cancer Cells: Raman Spectroscopy and Imaging Study.

ACS Omega. 2025-6-24

[2]
Label-free optical imaging for brain cancer assessment.

Trends Cancer. 2024-6

[3]
Window into the mind: Advanced handheld spectroscopic eye-safe technology for point-of-care neurodiagnostic.

Sci Adv. 2023-11-17

[4]
From Research to Diagnostic Application of Raman Spectroscopy in Neurosciences: Past and Perspectives.

Free Neuropathol. 2022-8-5

[5]
Combined Use of Frameless Neuronavigation and In Situ Optical Guidance in Brain Tumor Needle Biopsies.

Brain Sci. 2023-5-16

[6]
Molecular Fingerprint Detection Using Raman and Infrared Spectroscopy Technologies for Cancer Detection: A Progress Review.

Biosensors (Basel). 2023-5-18

[7]
Oil content analysis of corn seeds using a hand-held Raman spectrometer and spectral peak decomposition algorithm.

Front Plant Sci. 2023-4-3

[8]
A Handheld Visible Resonance Raman Analyzer Used in Intraoperative Detection of Human Glioma.

Cancers (Basel). 2023-3-14

[9]
Biomineralogical signatures of breast microcalcifications.

Sci Adv. 2023-2-22

[10]
Identification of Therapeutic Targets for Medulloblastoma by Tissue-Specific Genome-Scale Metabolic Model.

Molecules. 2023-1-12

本文引用的文献

[1]
The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary.

Acta Neuropathol. 2016-5-9

[2]
Using Raman spectroscopy to characterize biological materials.

Nat Protoc. 2016-3-10

[3]
New look inside human breast ducts with Raman imaging. Raman candidates as diagnostic markers for breast cancer prognosis: Mammaglobin, palmitic acid and sphingomyelin.

Anal Chim Acta. 2016-2-25

[4]
American Brain Tumor Association Adolescent and Young Adult Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012.

Neuro Oncol. 2016-1

[5]
CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012.

Neuro Oncol. 2015-10

[6]
Gold nanoparticles as a substrate in bio-analytical near-infrared surface-enhanced Raman spectroscopy.

Analyst. 2015-5-7

[7]
Intraoperative brain cancer detection with Raman spectroscopy in humans.

Sci Transl Med. 2015-2-11

[8]
The lipid-reactive oxygen species phenotype of breast cancer. Raman spectroscopy and mapping, PCA and PLSDA for invasive ductal carcinoma and invasive lobular carcinoma. Molecular tumorigenic mechanisms beyond Warburg effect.

Analyst. 2015-4-7

[9]
Label-free determination of lipid composition and secondary protein structure of human salivary noncancerous and cancerous tissues by Raman microspectroscopy.

Analyst. 2015-4-7

[10]
Oncologic photodynamic diagnosis and therapy: confocal Raman/fluorescence imaging of metal phthalocyanines in human breast cancer tissue in vitro.

Analyst. 2014-11-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索