Suppr超能文献

“火星2020”漫游车桅杆相机变焦(Mastcam-Z)多光谱立体成像调查

The Mars 2020 Rover Mast Camera Zoom (Mastcam-Z) Multispectral, Stereoscopic Imaging Investigation.

作者信息

Bell J F, Maki J N, Mehall G L, Ravine M A, Caplinger M A, Bailey Z J, Brylow S, Schaffner J A, Kinch K M, Madsen M B, Winhold A, Hayes A G, Corlies P, Tate C, Barrington M, Cisneros E, Jensen E, Paris K, Crawford K, Rojas C, Mehall L, Joseph J, Proton J B, Cluff N, Deen R G, Betts B, Cloutis E, Coates A J, Colaprete A, Edgett K S, Ehlmann B L, Fagents S, Grotzinger J P, Hardgrove C, Herkenhoff K E, Horgan B, Jaumann R, Johnson J R, Lemmon M, Paar G, Caballo-Perucha M, Gupta S, Traxler C, Preusker F, Rice M S, Robinson M S, Schmitz N, Sullivan R, Wolff M J

机构信息

Arizona State Univ., Tempe, AZ USA.

JPL/Caltech, Pasadena, CA USA.

出版信息

Space Sci Rev. 2021;217(1):24. doi: 10.1007/s11214-020-00755-x. Epub 2021 Feb 15.

Abstract

Mastcam-Z is a multispectral, stereoscopic imaging investigation on the Mars 2020 mission's rover. Mastcam-Z consists of a pair of focusable, 4:1 zoomable cameras that provide broadband red/green/blue and narrowband 400-1000 nm color imaging with fields of view from 25.6° × 19.2° (26 mm focal length at 283 μrad/pixel) to 6.2° × 4.6° (110 mm focal length at 67.4 μrad/pixel). The cameras can resolve (≥ 5 pixels) ∼0.7 mm features at 2 m and ∼3.3 cm features at 100 m distance. Mastcam-Z shares significant heritage with the Mastcam instruments on the Mars Science Laboratory rover. Each Mastcam-Z camera consists of zoom, focus, and filter wheel mechanisms and a 1648 × 1214 pixel charge-coupled device detector and electronics. The two Mastcam-Z cameras are mounted with a 24.4 cm stereo baseline and 2.3° total toe-in on a camera plate ∼2 m above the surface on the rover's Remote Sensing Mast, which provides azimuth and elevation actuation. A separate digital electronics assembly inside the rover provides power, data processing and storage, and the interface to the rover computer. Primary and secondary Mastcam-Z calibration targets mounted on the rover top deck enable tactical reflectance calibration. Mastcam-Z multispectral, stereo, and panoramic images will be used to provide detailed morphology, topography, and geologic context along the rover's traverse; constrain mineralogic, photometric, and physical properties of surface materials; monitor and characterize atmospheric and astronomical phenomena; and document the rover's sample extraction and caching locations. Mastcam-Z images will also provide key engineering information to support sample selection and other rover driving and tool/instrument operations decisions.

摘要

Mastcam-Z是火星2020任务火星车上的一个多光谱立体成像探测设备。Mastcam-Z由一对可聚焦、具备4:1变焦能力的相机组成,能够提供宽带红/绿/蓝以及400 - 1000纳米窄带彩色成像,其视野范围从25.6°×19.2°(283微弧度/像素时焦距为26毫米)到6.2°×4.6°(67.4微弧度/像素时焦距为110毫米)。这些相机在2米距离处能够分辨(≥5像素)约0.7毫米的特征,在100米距离处能够分辨约3.3厘米的特征。Mastcam-Z与火星科学实验室火星车上的Mastcam仪器有诸多共同之处。每个Mastcam-Z相机都由变焦、聚焦和滤光轮机构以及一个1648×1214像素的电荷耦合器件探测器和电子设备组成。两台Mastcam-Z相机安装在火星车遥感桅杆上距地面约2米处的相机板上,立体基线为24.4厘米,总前束角为2.3°,该桅杆提供方位角和仰角驱动。火星车内一个单独的数字电子组件提供电力、数据处理和存储功能,以及与火星车计算机的接口。安装在火星车顶部甲板上的主、次Mastcam-Z校准目标可进行战术反射率校准。Mastcam-Z的多光谱、立体和全景图像将用于提供火星车行驶路线沿途的详细形态、地形和地质背景信息;确定地表物质的矿物学、光度学和物理特性;监测和描述大气及天文现象;记录火星车的样本提取和缓存位置。Mastcam-Z图像还将提供关键工程信息,以支持样本选择以及其他火星车驾驶和工具/仪器操作决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e872/7884593/5e900bb31331/11214_2020_755_Fig1_HTML.jpg

相似文献

1
The Mars 2020 Rover Mast Camera Zoom (Mastcam-Z) Multispectral, Stereoscopic Imaging Investigation.
Space Sci Rev. 2021;217(1):24. doi: 10.1007/s11214-020-00755-x. Epub 2021 Feb 15.
2
Pre-Flight Calibration of the Mars 2020 Rover Mastcam Zoom (Mastcam-Z) Multispectral, Stereoscopic Imager.
Space Sci Rev. 2021;217(2):29. doi: 10.1007/s11214-021-00795-x. Epub 2021 Feb 18.
4
The Mars Science Laboratory (MSL) Mast cameras and Descent imager: Investigation and instrument descriptions.
Earth Space Sci. 2017 Aug;4(8):506-539. doi: 10.1002/2016EA000252. Epub 2017 Aug 19.
5
Geological, multispectral, and meteorological imaging results from the Mars 2020 Perseverance rover in Jezero crater.
Sci Adv. 2022 Nov 25;8(47):eabo4856. doi: 10.1126/sciadv.abo4856. Epub 2022 Nov 23.
7
The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests.
Space Sci Rev. 2021;217(1):4. doi: 10.1007/s11214-020-00777-5. Epub 2020 Dec 21.
8
Infrared Spectrometer for ExoMars: A Mast-Mounted Instrument for the Rover.
Astrobiology. 2017 Jun/Jul;17(6-7):542-564. doi: 10.1089/ast.2016.1543.
9
Homogeneity assessment of the SuperCam calibration targets onboard rover perseverance.
Anal Chim Acta. 2022 May 29;1209:339837. doi: 10.1016/j.aca.2022.339837. Epub 2022 Apr 26.
10
Photogeologic Map of the Perseverance Rover Field Site in Jezero Crater Constructed by the Mars 2020 Science Team.
Space Sci Rev. 2020 Nov 3;216(8). doi: 10.1007/s11214-020-00739-x. eCollection 2020 Dec.

引用本文的文献

1
Redox-driven mineral and organic associations in Jezero Crater, Mars.
Nature. 2025 Sep;645(8080):332-340. doi: 10.1038/s41586-025-09413-0. Epub 2025 Sep 10.
3
Detection of visible-wavelength aurora on Mars.
Sci Adv. 2025 May 16;11(20):eads1563. doi: 10.1126/sciadv.ads1563. Epub 2025 May 14.
5
Sampling Mars: Geologic context and preliminary characterization of samples collected by the NASA Mars 2020 Perseverance Rover Mission.
Proc Natl Acad Sci U S A. 2025 Jan 14;122(2):e2404255121. doi: 10.1073/pnas.2404255121. Epub 2025 Jan 6.
6
What we can learn about Mars from the magnetism of returned samples.
Proc Natl Acad Sci U S A. 2025 Jan 14;122(2):e2404259121. doi: 10.1073/pnas.2404259121. Epub 2025 Jan 6.
7
Visible to Near-Infrared Reflectance Spectroscopy of Asteroid (16) Psyche: Implications for the Psyche Mission's Science Investigations.
Earth Space Sci. 2023 Jan;10(1):e2022EA002694. doi: 10.1029/2022EA002694. Epub 2023 Jan 26.
8
Lifting and Transport of Martian Dust by the Ingenuity Helicopter Rotor Downwash as Observed by High-Speed Imaging From the Perseverance Rover.
J Geophys Res Planets. 2022 Dec;127(12):e2022JE007605. doi: 10.1029/2022JE007605. Epub 2022 Dec 20.
9
Geological, multispectral, and meteorological imaging results from the Mars 2020 Perseverance rover in Jezero crater.
Sci Adv. 2022 Nov 25;8(47):eabo4856. doi: 10.1126/sciadv.abo4856. Epub 2022 Nov 23.
10
Novelty detection in rover-based planetary surface images using autoencoders.
Front Robot AI. 2022 Oct 14;9:974397. doi: 10.3389/frobt.2022.974397. eCollection 2022.

本文引用的文献

1
Pre-Flight Calibration of the Mars 2020 Rover Mastcam Zoom (Mastcam-Z) Multispectral, Stereoscopic Imager.
Space Sci Rev. 2021;217(2):29. doi: 10.1007/s11214-021-00795-x. Epub 2021 Feb 18.
2
Photogeologic Map of the Perseverance Rover Field Site in Jezero Crater Constructed by the Mars 2020 Science Team.
Space Sci Rev. 2020 Nov 3;216(8). doi: 10.1007/s11214-020-00739-x. eCollection 2020 Dec.
3
The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests.
Space Sci Rev. 2021;217(1):4. doi: 10.1007/s11214-020-00777-5. Epub 2020 Dec 21.
5
Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover.
Astrobiology. 2017 Jul 1;17(6-7):471-510. doi: 10.1089/ast.2016.1533.
6
Seasonal Deposition and Lifting of Dust on Mars as Observed by the Curiosity Rover.
Sci Rep. 2018 Dec 4;8(1):17576. doi: 10.1038/s41598-018-35946-8.
7
The Mars Science Laboratory (MSL) Mast cameras and Descent imager: Investigation and instrument descriptions.
Earth Space Sci. 2017 Aug;4(8):506-539. doi: 10.1002/2016EA000252. Epub 2017 Aug 19.
10
Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars.
Science. 2015 Oct 9;350(6257):aac7575. doi: 10.1126/science.aac7575.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验