Suppr超能文献

美国国家航空航天局“火星2020”探测器上的超级相机仪器套件:机身单元和组合系统测试

The SuperCam Instrument Suite on the NASA Mars 2020 Rover: Body Unit and Combined System Tests.

作者信息

Wiens Roger C, Maurice Sylvestre, Robinson Scott H, Nelson Anthony E, Cais Philippe, Bernardi Pernelle, Newell Raymond T, Clegg Sam, Sharma Shiv K, Storms Steven, Deming Jonathan, Beckman Darrel, Ollila Ann M, Gasnault Olivier, Anderson Ryan B, André Yves, Michael Angel S, Arana Gorka, Auden Elizabeth, Beck Pierre, Becker Joseph, Benzerara Karim, Bernard Sylvain, Beyssac Olivier, Borges Louis, Bousquet Bruno, Boyd Kerry, Caffrey Michael, Carlson Jeffrey, Castro Kepa, Celis Jorden, Chide Baptiste, Clark Kevin, Cloutis Edward, Cordoba Elizabeth C, Cousin Agnes, Dale Magdalena, Deflores Lauren, Delapp Dorothea, Deleuze Muriel, Dirmyer Matthew, Donny Christophe, Dromart Gilles, George Duran M, Egan Miles, Ervin Joan, Fabre Cecile, Fau Amaury, Fischer Woodward, Forni Olivier, Fouchet Thierry, Fresquez Reuben, Frydenvang Jens, Gasway Denine, Gontijo Ivair, Grotzinger John, Jacob Xavier, Jacquinod Sophie, Johnson Jeffrey R, Klisiewicz Roberta A, Lake James, Lanza Nina, Laserna Javier, Lasue Jeremie, Le Mouélic Stéphane, Legett Carey, Leveille Richard, Lewin Eric, Lopez-Reyes Guillermo, Lorenz Ralph, Lorigny Eric, Love Steven P, Lucero Briana, Madariaga Juan Manuel, Madsen Morten, Madsen Soren, Mangold Nicolas, Manrique Jose Antonio, Martinez J P, Martinez-Frias Jesus, McCabe Kevin P, McConnochie Timothy H, McGlown Justin M, McLennan Scott M, Melikechi Noureddine, Meslin Pierre-Yves, Michel John M, Mimoun David, Misra Anupam, Montagnac Gilles, Montmessin Franck, Mousset Valerie, Murdoch Naomi, Newsom Horton, Ott Logan A, Ousnamer Zachary R, Pares Laurent, Parot Yann, Pawluczyk Rafal, Glen Peterson C, Pilleri Paolo, Pinet Patrick, Pont Gabriel, Poulet Francois, Provost Cheryl, Quertier Benjamin, Quinn Heather, Rapin William, Reess Jean-Michel, Regan Amy H, Reyes-Newell Adriana L, Romano Philip J, Royer Clement, Rull Fernando, Sandoval Benigno, Sarrao Joseph H, Sautter Violaine, Schoppers Marcel J, Schröder Susanne, Seitz Daniel, Shepherd Terra, Sobron Pablo, Dubois Bruno, Sridhar Vishnu, Toplis Michael J, Torre-Fdez Imanol, Trettel Ian A, Underwood Mark, Valdez Andres, Valdez Jacob, Venhaus Dawn, Willis Peter

机构信息

Los Alamos National Laboratory, Los Alamos, NM USA.

Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse, UPS, CNRS, Toulouse, France.

出版信息

Space Sci Rev. 2021;217(1):4. doi: 10.1007/s11214-020-00777-5. Epub 2020 Dec 21.

Abstract

The SuperCam instrument suite provides the Mars 2020 rover, Perseverance, with a number of versatile remote-sensing techniques that can be used at long distance as well as within the robotic-arm workspace. These include laser-induced breakdown spectroscopy (LIBS), remote time-resolved Raman and luminescence spectroscopies, and visible and infrared (VISIR; separately referred to as VIS and IR) reflectance spectroscopy. A remote micro-imager (RMI) provides high-resolution color context imaging, and a microphone can be used as a stand-alone tool for environmental studies or to determine physical properties of rocks and soils from shock waves of laser-produced plasmas. SuperCam is built in three parts: The mast unit (MU), consisting of the laser, telescope, RMI, IR spectrometer, and associated electronics, is described in a companion paper. The on-board calibration targets are described in another companion paper. Here we describe SuperCam's body unit (BU) and testing of the integrated instrument. The BU, mounted inside the rover body, receives light from the MU via a 5.8 m optical fiber. The light is split into three wavelength bands by a demultiplexer, and is routed via fiber bundles to three optical spectrometers, two of which (UV and violet; 245-340 and 385-465 nm) are crossed Czerny-Turner reflection spectrometers, nearly identical to their counterparts on ChemCam. The third is a high-efficiency transmission spectrometer containing an optical intensifier capable of gating exposures to 100 ns or longer, with variable delay times relative to the laser pulse. This spectrometer covers 535-853 nm ( Raman shift relative to the 532 nm green laser beam) with full-width at half-maximum peak resolution in the Raman fingerprint region. The BU electronics boards interface with the rover and control the instrument, returning data to the rover. Thermal systems maintain a warm temperature during cruise to Mars to avoid contamination on the optics, and cool the detectors during operations on Mars. Results obtained with the integrated instrument demonstrate its capabilities for LIBS, for which a library of 332 standards was developed. Examples of Raman and VISIR spectroscopy are shown, demonstrating clear mineral identification with both techniques. Luminescence spectra demonstrate the utility of having both spectral and temporal dimensions. Finally, RMI and microphone tests on the rover demonstrate the capabilities of these subsystems as well.

摘要

“超级相机”仪器套件为“火星2020”漫游车“毅力号”提供了多种通用遥感技术,这些技术可在远距离以及机械臂工作区内使用。这些技术包括激光诱导击穿光谱法(LIBS)、远程时间分辨拉曼光谱和发光光谱法,以及可见和红外(VISIR;分别称为VIS和IR)反射光谱法。一台远程微成像仪(RMI)提供高分辨率彩色背景成像,还有一个麦克风可用作环境研究的独立工具,或根据激光产生的等离子体的冲击波来确定岩石和土壤的物理特性。“超级相机”由三部分组成:桅杆单元(MU),包括激光器、望远镜、RMI、红外光谱仪及相关电子设备,在一篇配套论文中有描述。机载校准目标在另一篇配套论文中有描述。在此我们描述“超级相机”的机身单元(BU)以及该集成仪器的测试情况。机身单元安装在漫游车内部,通过一根5.8米长的光纤接收来自桅杆单元的光。光由一个解复用器分成三个波段,并通过光纤束传输到三个光学光谱仪,其中两个(紫外和紫光;245 - 340纳米和385 - 465纳米)是交叉 Czerny - Turner反射光谱仪,与“化学相机”上的对应光谱仪几乎相同。第三个是高效透射光谱仪,包含一个光学增强器,能够对曝光进行门控至100纳秒或更长时间,相对于激光脉冲具有可变延迟时间。该光谱仪覆盖535 - 853纳米(相对于532纳米绿色激光束的拉曼位移),在拉曼指纹区域具有半高全宽峰值分辨率。机身单元的电子板与漫游车接口并控制仪器,将数据返回给漫游车。热系统在前往火星的巡航过程中保持温暖温度,以避免光学元件受到污染,并在火星运行期间冷却探测器。使用该集成仪器获得的结果展示了其LIBS功能,为此开发了一个包含332种标准物质的库。展示了拉曼光谱和VISIR光谱的示例,证明了这两种技术都能清晰识别矿物。发光光谱展示了同时具备光谱和时间维度的实用性。最后,在漫游车上进行的RMI和麦克风测试也展示了这些子系统的功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8006/7752893/352c646ff001/11214_2020_777_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验