Suppr超能文献

手术机器人中的全光相机:校准、配准与评估。

Plenoptic Cameras in Surgical Robotics: Calibration, Registration, and Evaluation.

作者信息

Shademan Azad, Decker Ryan S, Opfermann Justin, Leonard Simon, Kim Peter C W, Krieger Axel

机构信息

School of Automation, Southeast University, Nanjing, Jiangsu, China; Kanazawa University, Kanazawa, Japan.

Control Science and Engineering Department, University of Shanghai for Science and Technology, Shanghai, China; Kanazawa University, Kanazawa, Japan.

出版信息

IEEE Int Conf Robot Autom. 2016 May;2016:708-714. doi: 10.1109/icra.2016.7487197. Epub 2016 Jun 9.

Abstract

Three-dimensional sensing of changing surgical scenes would improve the function of surgical robots. This paper explores the requirements and utility of a new type of depth sensor, the plenoptic camera, for surgical robots. We present a metric calibration procedure for the plenoptic camera and the registration of its coordinate frame to the robot (hand-eye calibration). We also demonstrate the utility in robotic needle insertion and application of sutures in phantoms. The metric calibration accuracy is reported as 1.14 ± 0.80 mm for the plenoptic camera and 1.57 ± 0.90 mm for hand-eye calibration. The accuracy of needle insertion task is 1.79 ± 0.35 mm for the entire robotic system. Additionally, the accuracy of suture placement with the presented system is reported at 1.80 ± 0.43 mm. Finally, we report consistent suture spacing with only 0.11 mm standard deviation between inter-suture distances. The measured accuracy of less than 2 mm with consistent suture spacing is a promising result to provide repeatable leak-free suturing with a robotic tool and a plenoptic depth imager.

摘要

对不断变化的手术场景进行三维感知将改善手术机器人的功能。本文探讨了一种新型深度传感器——全光相机,用于手术机器人的要求和实用性。我们提出了一种全光相机的度量校准程序,以及将其坐标系与机器人进行配准(手眼校准)的方法。我们还展示了其在机器人针插入和在模型中应用缝线方面的实用性。全光相机的度量校准精度报告为1.14±0.80毫米,手眼校准精度为1.57±0.90毫米。整个机器人系统的针插入任务精度为1.79±0.35毫米。此外,所展示系统的缝线放置精度报告为1.80±0.43毫米。最后,我们报告缝线间距一致,缝线间距离的标准偏差仅为0.11毫米。测量精度小于2毫米且缝线间距一致,这是一个很有前景的结果,有望通过机器人工具和全光深度成像仪实现可重复的无泄漏缝合。

相似文献

1
Plenoptic Cameras in Surgical Robotics: Calibration, Registration, and Evaluation.
IEEE Int Conf Robot Autom. 2016 May;2016:708-714. doi: 10.1109/icra.2016.7487197. Epub 2016 Jun 9.
2
Unfocused plenoptic metric modeling and calibration.
Opt Express. 2019 Jul 22;27(15):20177-20198. doi: 10.1364/OE.27.020177.
3
3D image-guided robotic needle positioning system for small animal interventions.
Med Phys. 2013 Jan;40(1):011909. doi: 10.1118/1.4771958.
4
Light field 3D measurement using unfocused plenoptic cameras.
Opt Lett. 2018 Aug 1;43(15):3746-3749. doi: 10.1364/OL.43.003746.
5
Marker-less real-time intra-operative camera and hand-eye calibration procedure for surgical augmented reality.
Healthc Technol Lett. 2019 Nov 12;6(6):255-260. doi: 10.1049/htl.2019.0094. eCollection 2019 Dec.
6
Camera-Robot Calibration for the da Vinci® Robotic Surgery System.
IEEE Trans Autom Sci Eng. 2020 Oct;17(4):2154-2161. doi: 10.1109/tase.2020.2986503. Epub 2020 May 6.
7
Adjoint Transformation Algorithm for Hand-Eye Calibration with Applications in Robotic Assisted Surgery.
Ann Biomed Eng. 2018 Oct;46(10):1606-1620. doi: 10.1007/s10439-018-2097-4. Epub 2018 Jul 26.
8
Geometry parameter calibration for focused plenoptic cameras.
Opt Express. 2020 Feb 3;28(3):3428-3441. doi: 10.1364/OE.381717.
9
Rectification of Images Distorted by Microlens Array Errors in Plenoptic Cameras.
Sensors (Basel). 2018 Jun 23;18(7):2019. doi: 10.3390/s18072019.
10
Insertion force in manual and robotic corneal suturing.
Int J Med Robot. 2012 Mar;8(1):25-33. doi: 10.1002/rcs.419. Epub 2011 Oct 10.

引用本文的文献

1
Applications of artificial intelligence in urologic oncology.
Investig Clin Urol. 2024 May;65(3):202-216. doi: 10.4111/icu.20230435.
2
Measurement Technologies of Light Field Camera: An Overview.
Sensors (Basel). 2023 Jul 31;23(15):6812. doi: 10.3390/s23156812.
3
A Wide Field-of-View Light-Field Camera with Adjustable Multiplicity for Practical Applications.
Sensors (Basel). 2022 Apr 30;22(9):3455. doi: 10.3390/s22093455.
4
Experimental assessment of a 3-D plenoptic endoscopic imaging system.
Chin Opt Lett. 2017;15(5). doi: 10.3788/COL201715.051701. Epub 2017 Mar 1.
5
Biocompatible Near-Infrared Three-Dimensional Tracking System.
IEEE Trans Biomed Eng. 2017 Mar;64(3):549-556. doi: 10.1109/TBME.2017.2656803. Epub 2017 Jan 23.

本文引用的文献

1
Endoscopic stereo reconstruction: a comparative study.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:2440-3. doi: 10.1109/EMBC.2014.6944115.
2
Smart tissue anastomosis robot (STAR): a vision-guided robotics system for laparoscopic suturing.
IEEE Trans Biomed Eng. 2014 Apr;61(4):1305-17. doi: 10.1109/TBME.2014.2302385.
3
Photometric stereo endoscopy.
J Biomed Opt. 2013 Jul;18(7):076017. doi: 10.1117/1.JBO.18.7.076017.
4
Computer-assisted measurement of wound size associated with self-injurious behavior.
J Appl Behav Anal. 2012 Winter;45(4):797-808. doi: 10.1901/jaba.2012.45-797.
5
Real-time three-dimensional soft tissue reconstruction for laparoscopic surgery.
Surg Endosc. 2012 Dec;26(12):3413-7. doi: 10.1007/s00464-012-2355-8. Epub 2012 May 31.
6
An endoscopic 3D scanner based on structured light.
Med Image Anal. 2012 Jul;16(5):1063-72. doi: 10.1016/j.media.2012.04.001. Epub 2012 Apr 11.
8
Precision in stitches: Radius Surgical System.
Surg Endosc. 2007 Nov;21(11):2056-62. doi: 10.1007/s00464-007-9289-6. Epub 2007 May 22.
9
Soft-tissue motion tracking and structure estimation for robotic assisted MIS procedures.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):139-46. doi: 10.1007/11566489_18.
10
A practical approach towards accurate dense 3D depth recovery for robotic laparoscopic surgery.
Comput Aided Surg. 2005 Jul;10(4):199-208. doi: 10.3109/10929080500230379.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验