Bowman Alan R, Lang Felix, Chiang Yu-Hsien, Jiménez-Solano Alberto, Frohna Kyle, Eperon Giles E, Ruggeri Edoardo, Abdi-Jalebi Mojtaba, Anaya Miguel, Lotsch Bettina V, Stranks Samuel D
Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom.
Max Planck Institute for Solid State Research, Nanochemistry Department, Heisenberg Strasse 1, 70569 Stuttgart, Germany.
ACS Energy Lett. 2021 Feb 12;6(2):612-620. doi: 10.1021/acsenergylett.0c02481. Epub 2021 Jan 22.
Perovskite-based tandem solar cells are of increasing interest as they approach commercialization. Here we use experimental parameters from optical spectroscopy measurements to calculate the limiting efficiency of perovskite-silicon and all-perovskite two-terminal tandems, employing currently available bandgap materials, as 42.0% and 40.8%, respectively. We show luminescence coupling between subcells (the optical transfer of photons from the high-bandgap to low-bandgap subcell) relaxes current matching when the high-bandgap subcell is a luminescent perovskite. We calculate that luminescence coupling becomes important at charge trapping rates (≤10 s) already being achieved in relevant halide perovskites. Luminescence coupling increases flexibility in subcell thicknesses and tolerance to different spectral conditions. For maximal benefit, the high-bandgap subcell should have the higher short-circuit current under average spectral conditions. This can be achieved by reducing the bandgap of the high-bandgap subcell, allowing wider, unstable bandgap compositions to be avoided. Lastly, we visualize luminescence coupling in an all-perovskite tandem through cross-section luminescence imaging.
随着钙钛矿基串联太阳能电池接近商业化,它们越来越受到关注。在这里,我们使用光学光谱测量的实验参数来计算钙钛矿-硅和全钙钛矿双端串联电池的极限效率,分别采用目前可用的带隙材料,计算结果为42.0%和40.8%。我们表明,当高带隙子电池是发光钙钛矿时,子电池之间的发光耦合(光子从高带隙子电池到低带隙子电池的光学转移)会缓解电流匹配问题。我们计算得出,在相关卤化物钙钛矿中已经实现的电荷俘获率(≤10 s)下,发光耦合变得很重要。发光耦合增加了子电池厚度的灵活性以及对不同光谱条件的耐受性。为了获得最大益处,在平均光谱条件下,高带隙子电池应具有更高的短路电流。这可以通过降低高带隙子电池的带隙来实现,从而避免使用更宽、不稳定的带隙组成。最后,我们通过截面发光成像可视化了全钙钛矿串联中的发光耦合。