Department of Materials Science, Stanford University , 476 Lomita Mall, Stanford, California 94305, United States.
Department of Chemistry, Stanford University , Stanford, California 94305, United States.
J Am Chem Soc. 2017 Aug 16;139(32):11117-11124. doi: 10.1021/jacs.7b04981. Epub 2017 Aug 4.
Tin and lead iodide perovskite semiconductors of the composition AMX, where M is a metal and X is a halide, are leading candidates for high efficiency low cost tandem photovoltaics, in part because they have band gaps that can be tuned over a wide range by compositional substitution. We experimentally identify two competing mechanisms through which the A-site cation influences the band gap of 3D metal halide perovskites. Using a smaller A-site cation can distort the perovskite lattice in two distinct ways: by tilting the MX octahedra or by simply contracting the lattice isotropically. The former effect tends to raise the band gap, while the latter tends to decrease it. Lead iodide perovskites show an increase in band gap upon partial substitution of the larger formamidinium with the smaller cesium, due to octahedral tilting. Perovskites based on tin, which is slightly smaller than lead, show the opposite trend: they show no octahedral tilting upon Cs-substitution but only a contraction of the lattice, leading to progressive reduction of the band gap. We outline a strategy to systematically tune the band gap and valence and conduction band positions of metal halide perovskites through control of the cation composition. Using this strategy, we demonstrate solar cells that harvest light in the infrared up to 1040 nm, reaching a stabilized power conversion efficiency of 17.8%, showing promise for improvements of the bottom cell of all-perovskite tandem solar cells. The mechanisms of cation-based band gap tuning we describe are broadly applicable to 3D metal halide perovskites and will be useful in further development of perovskite semiconductors for optoelectronic applications.
锡和铅碘化物钙钛矿半导体的组成 AMX,其中 M 是一种金属,X 是卤化物,是高效率、低成本串联光伏的首选材料,部分原因是它们的带隙可以通过组成替代在很宽的范围内进行调整。我们通过实验确定了两种竞争机制,通过这两种机制,A 位阳离子会影响 3D 金属卤化物钙钛矿的能带隙。使用较小的 A 位阳离子可以通过两种不同的方式扭曲钙钛矿晶格:通过倾斜 MX 八面体或通过简单地各向同性收缩晶格。前一种效应往往会提高带隙,而后者往往会降低带隙。由于八面体倾斜,部分取代较大的甲脒阳离子可以使碘化铅钙钛矿的带隙增加。基于锡的钙钛矿,其尺寸略小于铅,表现出相反的趋势:它们在 Cs 取代时不会发生八面体倾斜,而只会发生晶格收缩,导致带隙逐渐减小。我们概述了一种通过控制阳离子组成来系统地调整金属卤化物钙钛矿的带隙和价带和导带位置的策略。通过使用这种策略,我们展示了可以在红外光下吸收高达 1040nm 的光的太阳能电池,达到了 17.8%的稳定功率转换效率,为全钙钛矿串联太阳能电池的底部电池的改进展示了前景。我们描述的基于阳离子的带隙调谐机制广泛适用于 3D 金属卤化物钙钛矿,并将有助于进一步开发用于光电应用的钙钛矿半导体。